Skip to main content

Updates in Fetal Wound Healing and Scar Prevention

  • Chapter
  • First Online:
Book cover Pediatric Oculoplastic Surgery

Abstract

Periocular scarring can result in devastating clinical consequences including but not limited to disfigurement, amblyogenic ptosis, and visually threatening eyelid retraction. Understanding the principles of wound healing is important to prevent or reduce these devastating consequences and their psychosocial repercussions. In this chapter, we will review the basic principle of wound healing from the initial time of tissue injury and through the latest stages of scar remodeling. We will also review newer clinical and experimental modalities employed to date for the treatment or prevention of scar formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larson BJ, Longaker MT, Peter Lorenz H. Scarless fetal wound healing: a basic science review. Hagey Plast Reconstr Surg. 2010;126(4):1172–80. doi:10.1097/PRS.0b013e3181eae781.

    Article  CAS  PubMed  Google Scholar 

  2. Adzick NS, Longaker MT, editors. Fetal wound healing. New York: Elsevier Scientific; 1992.

    Google Scholar 

  3. Harrison MR. Fetal surgery. Am J Obstet Gynecol. 1996;174:1255–64.

    Article  CAS  PubMed  Google Scholar 

  4. Adzick NS, Thom EA, Spong CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kirsner RS, Eaglstein WH. The wound healing process. Dermatol Clin. 1993;11:629–40.

    CAS  PubMed  Google Scholar 

  6. Colwell AS, Phan TT, Kong W, et al. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation. Plast Reconstr Surg. 2005;116:1387–90.

    Article  CAS  PubMed  Google Scholar 

  7. Terkeltaub RA, Ginsberg MH. Platelets and response to injury. In: Clark RAF, Henson PM, editors. Molecular and cellular biology of wound repair. New York: Plenum; 1988. p. 35–55.

    Google Scholar 

  8. Clark RAF, Lanigan JM, DellaPelle P, et al. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during reepithelialization. J Invest Dermatol. 1982;79:264–9.

    Article  CAS  PubMed  Google Scholar 

  9. Jennings RW, Hunt TK. Overview of postnatal wound healing. In: Adzick NS, Longaker MT, editors. Fetal wound healing. New York: Elsevier Scientific; 1992. p. 25–52.

    Google Scholar 

  10. Martin P, et al. Wound healing in the PU.1 null mouse – tissue repair is not dependent on inflammatory cells. Curr Biol. 2003;13(13):1122–8.

    Article  CAS  PubMed  Google Scholar 

  11. Tonnesen MG, Anderson DC, Springer TA, et al. Adherence of neutrophils to cultured human microvascular endothelial cells stimulated by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95, glycoprotein family. J Clin Invest. 1989;83:637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.

    CAS  PubMed  Google Scholar 

  13. Lucas T, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184(7):3964–77.

    Article  CAS  PubMed  Google Scholar 

  14. Yates C, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. Birth Defects Res C Embryo Today. 2012;96(4):325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grinnell F. Wound repair, keratinocyte activation and integrin modulation. J Cell Sci. 1992;101:1–5.

    CAS  PubMed  Google Scholar 

  16. Oksala O, Salo T, Tammi R, et al. Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem. 1995;43:125–35.

    Article  CAS  PubMed  Google Scholar 

  17. Savani RC, Khalil N, Turley EA. Hyaluronan receptor antagonists alter skin inflammation and fibrosis following injury. Proc West Pharmacol Soc. 1995;38:131–6.

    CAS  PubMed  Google Scholar 

  18. Juhasz I, Murphy GF, Yan HY, et al. Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol. 1993;143:1458–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Falanga V. Growth factors and wound healing. Dermatol Clin. 1993;11:667–75.

    CAS  PubMed  Google Scholar 

  20. Carpenter G, Cohen S. Epidermal growth factor. Annu Rev. 1979;48:193–216.

    CAS  Google Scholar 

  21. Clark RAF. Biology of dermal repair. Dermatol Clin. 1993;11:647–66.

    CAS  PubMed  Google Scholar 

  22. Schmitt-Graff A, Desmouliére A, Gabbiani G. Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch. 1994;425:3–24.

    Article  CAS  PubMed  Google Scholar 

  23. Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol. 1994;124:401–4.

    Article  CAS  PubMed  Google Scholar 

  24. Desmoulière A. Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol Int. 1995;19:471–6.

    Article  PubMed  Google Scholar 

  25. Madden JW, Peacock EE. Studies on the biology of collagen during wound healing: dynamic metabolism of scar collagen and remodeling of dermal wounds. Ann Surg. 1971;174:511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holbrook KA, Hoff MS. Structure of the developing human embryonic and fetal skin. Semin Dermatol. 1984;3:185–202.

    Google Scholar 

  27. Lane AT, Scott GA, Day KH. Development of human fetal skin transplanted to the nude mouse. J Invest Dermatol. 1989;93:787–91.

    Article  CAS  PubMed  Google Scholar 

  28. Coolen NA, Schouten KC, Middelkoop E, et al. Comparison between human fetal and adult skin. Arch Dermatol Res. 2010;302(1):47–55.

    Article  PubMed  Google Scholar 

  29. Rowlatt U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch A Pathol Anat Histol. 1979;381(3):353–61.

    Article  CAS  PubMed  Google Scholar 

  30. Adzick NS, Lorenz HP. Cells, matrix, growth factors, and the surgeon: the biology of scarless fetal wound repair. Ann Surg. 1994;220:10–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Block M. Wound healing in the newborn opossum. Nature. 1960;187:340–1.

    Article  CAS  PubMed  Google Scholar 

  32. Armstrong JR, Ferguson MWJ. Ontogeny of the skin and the transition from scar free to scarring phenotype during wound healing in the pouch young of the marsupial Monodelphis domestica. Dev Biol. 1995;169:242–60.

    Article  CAS  PubMed  Google Scholar 

  33. Lorenz HP, Longaker MT, Perkocha LA, et al. Scarless wound repair: a human fetal skin model. Development. 1992;114:253–9.

    CAS  PubMed  Google Scholar 

  34. Longaker MT, Whitby DJ, Ferguson MWJ, et al. Adult skin wounds in the fetal environment heal with scar formation. Ann Surg. 1994;219:65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lorenz HP, Whitby DJ, Longaker MT, et al. Fetal wound healing: the ontogeny of scar formation in the non-human primate. Ann Surg. 1993;217:391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ihara S, Motobayashi Y, Nagao E, et al. Ontogenetic transition of wound healing pattern in rat skin occurring at the fetal stage. Development. 1990;110:671–80.

    CAS  PubMed  Google Scholar 

  37. Longaker MT, Whitby DJ, Adzick NS, et al. Studies in fetal wound healing, VI: second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation. J Pediatr Surg. 1990;25:63–9.

    Article  CAS  PubMed  Google Scholar 

  38. Longaker MT, Moelleken BRW, Cheng JC, et al. Fetal fracture healing in a lamb model. Plast Reconstr Surg. 1992;90:161–73.

    Article  CAS  PubMed  Google Scholar 

  39. Goss AN. Intra-uterine healing of fetal rat oral mucosal, skin and cartilage wounds. J Oral Pathol. 1977;6:35–43.

    Article  CAS  PubMed  Google Scholar 

  40. Meuli-Simmen C, Meuli M, Yingling CD, et al. Failure of the fetal sciatic nerve to regenerate at midgestation. Surg Forum. 1995;46:689–91.

    Google Scholar 

  41. Longaker MT, Whitby DJ, Jennings RW, et al. Fetal diaphragmatic wounds heal with scar formation. J Surg Res. 1991;50:375–85.

    Article  CAS  PubMed  Google Scholar 

  42. Cass DL, Bullard KM, Sylvester KG, et al. Wound size and gestational age modulate scar formation in fetal wound repair. J Pediatr Surg. 1997;32(3):411–5.

    Article  CAS  PubMed  Google Scholar 

  43. Olutoye OO, Alaish SM, Carr ME, et al. Aggregatory characteristics and expression of the collagen adhesion receptor in fetal porcine platelets. J Pediatr Surg. 1995;30:1649–53.

    Article  CAS  PubMed  Google Scholar 

  44. Olutoye OO, Yager DR, Cohen IK, et al. Lower cytokine release by fetal porcine platelets: a possible explanation for reduced inflammation after fetal wounding. J Pediatr Surg. 1996;31:91–5.

    Article  CAS  PubMed  Google Scholar 

  45. Jennings RW, Adzick NS, Longaker MT, et al. Ontogeny of fetal sheep polymorphonuclear leukocyte phagocytosis. J Pediatr Surg. 1991;26:853–5.

    Article  CAS  PubMed  Google Scholar 

  46. Adolph VR, DiSanto SK, Bleacher JC, et al. The potential role of the lymphocyte in fetal wound healing. J Pediatr Surg. 1993;28:1316–20.

    Article  CAS  PubMed  Google Scholar 

  47. Dixon JB. Inflammation in the foetal and neonatal rat: the local reactions to skin burns. J Pathol Bact. 1960;80:73–82.

    Article  CAS  Google Scholar 

  48. Mast BA, Krummel TM. Acute inflammation in fetal wound healing. In: Adzick NS, Longaker MT, editors. Fetal wound healing. New York: Elsevier Scientific; 1992. p. 227–40.

    Google Scholar 

  49. Schwartz LW, Osburn BI. An ontogenic study of the acute inflammatory reaction in the fetal rhesus monkey. Lab Investig. 1974;31:441–53.

    CAS  PubMed  Google Scholar 

  50. Whitby DJ, Ferguson MWJ. The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development. 1991;112:651–68.

    CAS  PubMed  Google Scholar 

  51. Dillon PW, Keefer K, Blackburn JH, et al. The extracellular matrix of the fetal wound: hyaluronic acid controls lymphocyte adhesion. J Surg Res. 1994;57:170–3.

    Article  CAS  PubMed  Google Scholar 

  52. Frantz FW, Bettinger DA, Haynes JH, et al. Biology of fetal repair: the presence of bacteria in fetal wounds induces an adult-like healing response. J Pediatr Surg. 1993;28:428–34.

    Article  CAS  PubMed  Google Scholar 

  53. Kumta S, Ritz M, Hurley V, et al. Acute inflammation in foetal and adult sheep: the response to subcutaneous injection of turpentine and carrageenan. Br J Plast Surg. 1994;47:360–8.

    Article  CAS  PubMed  Google Scholar 

  54. Hopkinson-Woolley J, Hughes D, Gordon S, Martin P. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci. 1994;107(Pt 5):1159–67.

    PubMed  Google Scholar 

  55. Diegelmann RF, Cohen IK, Kaplan AM. The role of macrophages in wound repair: a review. Plast Reconstr Surg. 1981;68:107–13.

    Article  CAS  PubMed  Google Scholar 

  56. Adzick NS, Harrison MR, Glick PL, et al. Comparison of fetal, newborn, and adult wound healing by histologic, enzyme-histochemical and hydroxyproline determinations. J Pediatr Surg. 1985;20:315–9.

    Article  CAS  PubMed  Google Scholar 

  57. Longaker MT, Bouhana KS, Roberts AB, et al. Regulation of fetal wound healing. Surg Forum. 1991;42:654–5.

    Google Scholar 

  58. Duncan BW, Qian J, Liu X, et al. Regulation of prolyl hydroxylase activity in fetal and adult fibroblasts. In: Adzick NS, Longaker MT, editors. Fetal wound healing. New York: Elsevier Scientific; 1992. p. 303–16.

    Google Scholar 

  59. Chang J, Longaker MT, Lorenz HP, et al. Fetal and adult sheep fibroblast TGF-β1 gene expression in vitro: effects of hypoxia and gestational age. Surg Forum. 1993;44:720–2.

    Google Scholar 

  60. Lorenz HP, Chang J, Longaker MT, et al. Transforming growth factors β1 and β2 synergistically increase collagen gene expression in fetal fibroblasts but not in adult fibroblasts. Surg Forum. 1993;44:723–5.

    Google Scholar 

  61. Moriarty KP, Crombleholme TM. Differential fibroblast chemotaxis in fetal, neonatal, and adult cell lies in response to TGF-β1 and fetal bovine serum. Surg Forum. 1995;46:679–81.

    Google Scholar 

  62. Durham LA, Krummel TM, Cawthorn JW, et al. Analysis of transforming growth factor beta receptor binding in embryonic, fetal, and rabbit fibroblasts. J Pediatr Surg. 1989;24:784–8.

    Article  PubMed  Google Scholar 

  63. Alaish SM, Yager D, Diegelmann RF, et al. Biology of fetal wound healing: hyaluronate receptor expression in fetal fibroblasts. J Pediatr Surg. 1994;29:1040–3.

    Article  CAS  PubMed  Google Scholar 

  64. Freund RM, Siebert JW, Cabrera RC, et al. Serial quantitation of hyaluronan and sulfated glycosaminoglycans in fetal sheep skin. Biochem Mol Biol Int. 1993;29:773–83.

    CAS  PubMed  Google Scholar 

  65. DePalma RL, Krummel TM, Durham LA, et al. Characterization and quantitation of wound matrix in the fetal rabbit. Matrix. 1989;9:224–31.

    Article  CAS  PubMed  Google Scholar 

  66. Knight KR, Horne RS, Leporre DA, et al. Glycosaminoglycan composition of uninjured skin and of scar tissue in fetal, newborn and adult sheep. Res Exp Med. 1994;194:119–27.

    Article  CAS  Google Scholar 

  67. Meyer LJM, Stern R. Age-dependent changes of hyaluronan in human skin. J Invest Dermatol. 1994;102:385–9.

    Article  CAS  PubMed  Google Scholar 

  68. Estes JM, Adzick NS, Harrison MR, et al. Hyaluronate metabolism undergoes an ontogenic transition during fetal development: implications for scar-free wound healing. J Pediatr Surg. 1993;28:1227–31.

    Article  CAS  PubMed  Google Scholar 

  69. Bertolami CN, Donoff RB. Hyaluronidase activity during open wound healing in rabbits: a preliminary report. J Surg Res. 1978;25:256–9.

    Article  CAS  PubMed  Google Scholar 

  70. Longaker MT, Chiu ES, Adzick NS, et al. Studies in fetal wound healing, V: a prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann Surg. 1991;213:292–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Siebert JW, Burd AR, McCarthy, et al. Fetal wound healing: a biochemical study of scarless healing. Plast Reconstr Surg. 1990;85:495–504.

    Article  CAS  PubMed  Google Scholar 

  72. Epstein EH. [α1(III)] human skin collagen. J Biol Chem. 1974;249:3225–31.

    CAS  PubMed  Google Scholar 

  73. Merkel JR, DiPaolo BR, Hallock GG, et al. Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med. 1988;187:493–7.

    Article  CAS  PubMed  Google Scholar 

  74. Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol. 1998;160(1):419–25.

    CAS  PubMed  Google Scholar 

  75. Nath RK, Parks WC, Mackinnon SE, et al. The regulation of collagen in fetal skin wounds: mRNA localization and analysis. J Pediatr Surg. 1994;29:855–62.

    Article  CAS  PubMed  Google Scholar 

  76. Burd DAR, Longaker MT, Adzick NS, et al. Fetal wound healing in a large animal model: the deposition of collagen is confirmed. Br J Plast Surg. 1990;43:571–7.

    Article  CAS  PubMed  Google Scholar 

  77. Frantz FW, Mast BA, Diegelmann RF, et al. Rapid restoration of breaking strength in healing fetal rabbit wounds. Surg Forum. 1991;42:661–3.

    Google Scholar 

  78. Sztrolovics R, Chen XN, Grover J, Roughley PJ, Korenberg JR. Localization of the human fibromodulin gene (FMOD) to chromosome 1q32 and completion of the cDNA sequence. Genomics. 1995;23(3):715–7.

    Article  Google Scholar 

  79. Halper J. Proteoglycans and diseases of soft tissues. Adv Exp Med Biol. 2014;802:49–58.

    Article  CAS  PubMed  Google Scholar 

  80. Ezura Y, Chakravarti S, Oldberg A, Chervoneva I, Birk DE. Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J Cell Biol. 2000;151(4):779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kalamajski S, Oldberg A. Fibromodulin binds collagen type I via Glu-353 and Lys-355 in leucine-rich repeat 11. J Biol Chem. 2007;282(37):26740–5.

    Article  CAS  PubMed  Google Scholar 

  82. Smith MM, Melrose J. Proteoglycans in normal and healing skin. Adv Wound Care. 2015;4(3):152–73.

    Article  Google Scholar 

  83. Juneja SC, Veillette C. Defects in tendon, ligament, and enthesis in response to genetic alterations in key proteoglycans and glycoproteins: a review. Arthritis. 2013;2013:154812.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Delalande A, Gosselin MP, Suwalski A, Guilmain W, Leduc C, Berchel M, Jaffrès PA, Baril P, Midoux P, Pichon C. Enhanced Achilles tendon healing by fibromodulin gene transfer. Nanomed Nanotechnol Biol Med. 2015;11(7):1735–44.

    Article  CAS  Google Scholar 

  85. Zheng Z, Zhang X, Dang C, Beanes S, Chang GX, Chen Y, Li CS, Lee KS, Ting K, Soo C. Fibromodulin is essential for fetal-type scarless cutaneous wound healing. Am J Pathol. 2016;186(11):2824–32. pii: S0002–9440(16)30307–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ffrench-Constant C, Van DeWater L, Dvorak HF, et al. Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol. 1989;109:903–14.

    Article  CAS  PubMed  Google Scholar 

  87. Longaker MT, Whitby DJ, Ferguson MW, et al. Studies in fetal wound healing, III: early deposition of fibronectin distinguishes fetal from adult wound healing. J Pediatr Surg. 1989;24:799–805.

    Article  CAS  PubMed  Google Scholar 

  88. Whitby DJ, Longaker MT, Brown L, et al. Expression of alternatively spliced fibronectin mRNA during fetal wound healing. Surg Forum. 1995;46:644–6.

    Google Scholar 

  89. Mackie EJ, Halfter W, Liverani KD. Induction of tenascin in healing wounds. J Cell Biol. 1988;107:2757–67.

    Article  CAS  PubMed  Google Scholar 

  90. Whitby DJ, Longaker MT, Adzick NS, et al. Rapid epithelialization of fetal wounds is associated with the early deposition of tenascin. J Cell Sci. 1991;99:583–6.

    PubMed  Google Scholar 

  91. Martin P, Lewis J. Actin cables and epidermal movement in embryonic wound healing. Nature. 1992;360:179–82.

    Article  CAS  PubMed  Google Scholar 

  92. Martin P, Nobes C, McCluskey J, et al. Repair of excisional wounds in the embryo. Eye. 1994;8:155–60.

    Article  PubMed  Google Scholar 

  93. Darby I, Skalli O, Gabbiani G. α-Smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest. 1990;63:21–9.

    Google Scholar 

  94. Haynes JH, Krummel TM, Schatzki PF, et al. Histology of the open fetal rabbit wound. Surg Forum. 1989;40:558–60.

    Google Scholar 

  95. Longaker MT, Burd DAR, Gown AM, et al. Midgestational fetal lamb excisional wounds contract in utero. J Pediatr Surg. 1991;26:942–8.

    Article  CAS  PubMed  Google Scholar 

  96. Krummel TM, Ehrlich HP, Nelson JM, et al. In vitro and in vivo analysis of the inability of fetal rabbit wounds to contract. Wound Repair Regen. 1993;1:15–21.

    Article  CAS  PubMed  Google Scholar 

  97. Somasundaram K, Prathap K. The effect of exclusion of amniotic fluid on intrauterine healing of skin wounds in rabbit foetuses. J Pathol. 1972;107:127–30.

    Article  CAS  PubMed  Google Scholar 

  98. Ledbetter MS, Morykwas MJ, Ditesheim JA, et al. The effects of partial and total amniotic fluid exclusion on excisional fetal rabbit wounds. Ann Plast Surg. 1991;27:139–45.

    Article  CAS  PubMed  Google Scholar 

  99. Wider TM, Yager JS, Rittenberg T, et al. The inhibition of fibroblast-populated collagen lattice contraction by human amniotic fluid: a chronologic examination. Plast Reconstr Surg. 1993;91:1287–93.

    Article  CAS  PubMed  Google Scholar 

  100. Rittenberg T, Longaker MT, Adzick NS, et al. Sheep amniotic fluid has a protein which stimulates human fibroblast populated collagen lattice contraction. J Cell Physiol. 1991;149:444–50.

    Article  CAS  PubMed  Google Scholar 

  101. Whitby DH, Ferguson MWJ. Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol. 1989;147:207–15.

    Article  Google Scholar 

  102. Gould LJ, Diegelmann RF, Yager D, et al. The differential effects of platelet-derived growth factor (PDGF) isoforms on fetal wound healing. Surg Forum. 1993;44:728–9.

    Google Scholar 

  103. Krummel TM, Michna BA, Thomas BL, et al. Transforming growth factor beta (TGF-β) induces fibrosis in a fetal wound model. J Pediatr Surg. 1988;23:647–52.

    Article  CAS  PubMed  Google Scholar 

  104. DeLozier J, Nanney LB, Hagan K, et al. Epidermal growth factor enhances fetal epithelialization. Surg Forum. 1986;37:623–6.

    Google Scholar 

  105. Nanney LB, Stoscheck CM, King LE, et al. Immunolocalization of epidermal growth factor receptors in normal developing human skin. J Invest Dermatol. 1990;94:742–8.

    Article  CAS  PubMed  Google Scholar 

  106. Lin RY, Sullivan KM, Argenta PA, et al. Exogenous transforming growth factor-beta amplifies its own expression and induces scar formation in a model of human fetal skin repair. Ann Surg. 1995;222:146–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sullivan KM, Lorenz HP, Meuli M, et al. A model of scarless human fetal wound repair is deficient in transforming growth factor beta. J Pediatr Surg. 1995;30:198–203.

    Article  CAS  PubMed  Google Scholar 

  108. Nath RK, La Regina M, Markham H, et al. The expression of transforming growth factor type beta in fetal and adult rabbit skin wounds. J Pediatr Surg. 1994;29:416–21.

    Article  CAS  PubMed  Google Scholar 

  109. Siebert JW, Sung JJ, Zirn J, et al. Immunohistochemical localization of TGF-β1, -β2, and -β3 isoforms during fetal wound healing. Surg Forum. 1995;46:646–8.

    Google Scholar 

  110. Martin P, Dickson MC, Millan FA, et al. Rapid induction and clearance of TGFβ1 is an early response to wounding in the mouse embryo. Dev Genet. 1993;14:225–38.

    Article  CAS  PubMed  Google Scholar 

  111. Shah M, Foreman DM, Ferguson MWJ. Neutralisation of TGF-β1 and TGF-β2 or exogenous addition of TGF-β3 to cutaneous rat wounds reduces scarring. J Cell Sci. 1995;108:985–1002.

    CAS  PubMed  Google Scholar 

  112. Liechty KW, Crombleholme TM, Cass DL, Martin B, Adzick NS. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J Surg Res. 1998;77(1):80–4.

    Article  CAS  PubMed  Google Scholar 

  113. Liechty KW, Kim HB, Adzick NS, et al. Fetal wound repair results in scar formation in interleukin-10 deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg. 2000;35:866–72.

    Article  CAS  PubMed  Google Scholar 

  114. Roberts AB. Transforming growth factor-β: activity and efficacy in animal models of wound healing. Wound Repair Regen. 1995;3:408–18.

    Article  CAS  PubMed  Google Scholar 

  115. Mustoe TA, Pierce GF, Thomason A, et al. Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta. Science. 1987;237:1333–6.

    Article  CAS  PubMed  Google Scholar 

  116. Pierce GF, Mustoe TA, Lingelbach J, et al. Transforming growth factor beta reverses the glucocorticoid-induced wound-healing deficit in rats: possible regulation in macrophages by platelet-derived growth factor. Proc Natl Acad Sci USA. 1989;86:2229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Beck LS, DeGuzman L, Lee WP, et al. One systemic administration of transforming growth factor-beta 1 reverses age- or glucocorticoid-impaired wound healing. J Clin Invest. 1993;92:2841–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Curtsinger LJ, Pietsch JD, Brown GL, et al. Reversal of adriamycin-impaired wounds: importance of transforming growth factor-beta. Surg Gynecol Obstet. 1989;168:517–22.

    CAS  PubMed  Google Scholar 

  119. Cromack DT, Porras-Reyes B, Purdy JA, et al. Acceleration of tissue repair by transforming growth factor beta 1: identification of in vivo mechanism of action with radiotherapy-induced specific healing deficits. Surgery. 1993;113:36–42.

    CAS  PubMed  Google Scholar 

  120. Grant MB, Khaw PT, Schultz GS, et al. Effects of epidermal growth factor, fibroblast growth factor, and transforming growth factor-beta on corneal cell chemotaxis. Invest Ophthalmol Vis Sci. 1992;33:3292–301.

    CAS  PubMed  Google Scholar 

  121. Smiddy WE, Glaser BM, Thompson JT, et al. Transforming growth factor-beta 2 significantly enhances the ability to flatten the rim of subretinal fluid surrounding macular holes: preliminary anatomic results of a multicenter prospective randomized study. Retina. 1993;13:296–301.

    Article  CAS  PubMed  Google Scholar 

  122. Walraven M, Beelen RH, Ulrich MM. Transforming growth factor-β (TGF-β) signaling in healthy human fetal skin: a descriptive study. J Dermatol Sci. 2015;78(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  123. Lichtman MK, et al. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24(2):215–22.

    Article  PubMed  Google Scholar 

  124. Shah M, Foreman DM, Ferguson MWJ. Control of scarring in adult wounds by neutralizing antibody to transforming growth factor beta. Lancet. 1992;339:213–4.

    Article  CAS  PubMed  Google Scholar 

  125. Little JA, et al. TGF β 3 immunoassay standardization: comparison of NIBSC reference preparation code 98/608 with avotermin lot 205-0505-005. J Immunoassay Immunochem. 2012;33(1):66–81.

    Article  CAS  PubMed  Google Scholar 

  126. Border WA, Noble NA, Yamamoto T, et al. Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease. Nature. 1992;360:361–4.

    Article  CAS  PubMed  Google Scholar 

  127. Viera M, et al. Innovative therapies in the treatment of keloids and hypertrophic scars. J Clin Aesthet Dermatol. 2010;3(5):20–6.

    Google Scholar 

  128. Roberts, Thomas L III. The emerging role of the CO2 laser in aesthetic plastic surgery. Presented at the XIII Congress of the International Society for Aesthetic Plastic Surgery, New York, NY, Sept 28–Oct 1, 1995.

    Google Scholar 

  129. Zadkowski T, et al. A new CO2 laser technique for the treatment of pediatric hypertrophic burn scars: an observational study. Medicine. 2016;95(42):e5168.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Krakowski AC, et al. Scar management in the pediatric and adolescent populations. Pediatrics. 2016;137(2):e20142065.

    Article  PubMed  Google Scholar 

  131. Yu M, et al. Polydeoxyribonucleotide improves wound healing of fractional laser resurfacing in rat model. J Cosmet Laser Ther. 2017;19(1):43–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lama Khatib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khatib, L., Cass, D.L., Adzick, N.S. (2018). Updates in Fetal Wound Healing and Scar Prevention. In: Katowitz, J., Katowitz, W. (eds) Pediatric Oculoplastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-60814-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60814-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60812-9

  • Online ISBN: 978-3-319-60814-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics