Skip to main content

Characteristic, Architecture, Technology, and Design Methodology of Cyber-Physical Systems

  • Conference paper
  • First Online:
Industrial IoT Technologies and Applications (Industrial IoT 2017)

Abstract

Cyber-physical systems (CPS) involve in a variety of computing model integration and collaborative work. There are some problems such as un-unified design methods, worse elasticity, high complexity, difficult to implement cyber-physical co-design and co-verification, etc. Aiming at the co-design of embedded components, sensing components, controlling components, communication components and physical components in heterogeneous environments, this paper proposes the characteristics, architectures, technologies, and design methodologies of CPSs. It’s necessary to design CPSs in the model-driven design process to establish CPSs and confirm its correctness, support cyber-physical co-design and correctness by construction so as to avoid modifying repeatedly the design when problems are found in the system realization process, and provide the necessary theoretical and practical technical supports to establish CPSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marwedel, P.: Embedded Systems Design - Embedded Systems Foundations of Cyber-Physical Systems. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  2. Wang, Y., He, L.: The application of CAN bus microcontroller MC9S08DZ60 in automotive electronic control unit. In: Proceedings of the International Conference Science and Engineering, pp. 2608–2611 (2013)

    Google Scholar 

  3. Lee, I., Hatcliff, J., King, A., Roederer, A.: Challenges and research directions in medical cyber-physical systems. Proc. IEEE 100(1), 75–90 (2012)

    Article  Google Scholar 

  4. Sridhar, S., Govindarasu, M.: Cyber-physical system security for the electric power grid. Proc. IEEE 100(1), 210–224 (2012)

    Article  Google Scholar 

  5. Ili′c, M., Xie, L., Khan, U., Moura, J.: Modeling of future cyber-physical energy systems for distributed sensing and control. IEEE Trans. Syst. Man Cybernet. Part A Syst. Hum. 40(4), 825–838 (2012)

    Article  Google Scholar 

  6. Derler, P., Lee, E., Sangiovanni-Vincentelli, A.: Modeling cyber-physical systems. Proc. IEEE 100(1), 13–28 (2012)

    Article  Google Scholar 

  7. Lai, C., Ma, Y., Chang, S., Chao, H., Huang, Y.: OSGi-based services architecture for cyber-physical home control systems. Comput. Commun. 34(2), 184–191 (2011)

    Article  Google Scholar 

  8. Fink, J., Kumar, V.: Robust control for mobility and wireless communication in cyber-physical systems with application to robot teams. Proc. IEEE 100(1), 164–178 (2012)

    Article  Google Scholar 

  9. Tan, Y., Vuran, M., et al.: A concept lattice-based event model for cyber-physical systems. In: Proceedings of the International Conference on Cyber-Physical Systems, pp. 50–60 (2010)

    Google Scholar 

  10. Sha, L., Meseguer, J.: Design of complex cyber physical systems with formalized architectural patterns. In: Wirsing, M., BanĂ¢tre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing Paradigms. LNCS, vol. 5380, pp. 92–100. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89437-7_5

    Chapter  Google Scholar 

  11. Wang, B., Zhou, T., Liu, J.: Recommendation Systems, Information Filtering and Internet-Based Information-Physics. Complex Syst. Complex. Sci. 7(2), 46–49 (2010)

    Google Scholar 

  12. Chen, H., Cui, L., Xie, K.: A comparative study on architectures and implementation methodologies of internet of things. Chin. J. Comput. 36(1), 168–188 (2013)

    Article  Google Scholar 

  13. Yu, Z., Jin, H., Goswami, N., Li, T., John, L.: Hierarchically characterizing CUDA program behavior. In: Proceedings of the IEEE International Symposium on Workload Characterization, vol. 76 (2011)

    Google Scholar 

  14. Wang, C., Li, X., Zhou, X., Ha, Y.: Parallel dataflow execution for sequential programs on reconfigurable hybrid MPSoCs. In: Proceedings of the International Conference on Field-Programmable Technology, pp. 53–56 (2012)

    Google Scholar 

  15. Chen, Y., Chen, T., Guo, Q., Xu, Z., Zhang, L.: An elastic architecture adaptable to millions of application scenarios. In: Park, J.J., Zomaya, A., Yeo, S.-S., Sahni, S. (eds.) NPC 2012. LNCS, vol. 7513, pp. 188–195. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35606-3_22

    Chapter  Google Scholar 

  16. Tokuno, K., Yamada, S.: Codesign-oriented performability modeling for hardware- software systems. IEEE Trans. Reliab. 60(1), 171–179 (2011)

    Article  Google Scholar 

  17. Song, T., Kim, J., Pak, J., Kim, J.: Chip-package co-modeling & verification of noise coupling & generation in CMOS DC/DC buck converter. In: Proceedings of the International Zurich Symposium on Electromagnetic Compatibility, pp. 285–288 (2009)

    Google Scholar 

  18. Fan, G., Yu, H., Chen, L., Liu, D.: Strategy driven modeling and analysis of reliable embedded systems. J. Softw. 22(6), 1123–1139 (2011)

    Article  Google Scholar 

  19. Wan, J., Zhang, D., Zhao, S., et al.: Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. Commun. Mag. IEEE 52(8), 106–113 (2014)

    Article  Google Scholar 

  20. Zhang, Z., Porter, J., Eyisi, E., et al.: Co-simulation framework for design of time-triggered cyber physical systems. In: Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems, pp. 119–128 (2013)

    Google Scholar 

  21. Molina, J., Damm, M., Haase, J., Holleis, E., Grimm, C.: Model based design of distributed embedded cyber physical systems. In: Haase, J. (ed.) Models, Methods, and Tools for Complex Chip Design. LNEE, vol. 265, pp. 127–143. Springer, Cham (2014). doi:10.1007/978-3-319-01418-0_8

    Chapter  Google Scholar 

  22. Shin, D., He, S., Zhang, J.: Robust, secure, and cost-effective design for cyber-physical systems. IEEE Intell. Syst. 29(1), 66–69 (2014)

    Article  Google Scholar 

  23. Rajhans, A., Bhave, A., Ruchkin, I., et al.: Supporting heterogeneity in cyber-physical systems architectures. IEEE Trans. Autom. Control’s Spec. Issue Control Cyber-Phys. Syst. 59(12), 3178–3193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, H., Dimitrovski, A., Song, J., Han, Z.: Communication infrastructure design in cyber physical systems with applications in smart grids: a hybrid system framework. IEEE Commun. Surv. Tutorials 16(3), 1689–1708 (2014)

    Article  Google Scholar 

  25. Xia, Y., Dai, G., Tang, F., Zhu, Q.: A stochastic-petri-net-based model for ontology-based service compositions. In: Proceedings of the International Symposium on Theoretical Aspects of Software Engineering, pp. 187–190 (2011)

    Google Scholar 

  26. Ding, Z., Jiang, C., Zhou, M., Zhang, Y.: Preserving languages and properties in stepwise refinement-based synthesis of petri nets. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(4), 791–801 (2008)

    Article  Google Scholar 

  27. Liu, S., Mu, C.: Petri net EPRES for embedded system modeling. J. Tsinghua Univ. (Science and Technology) 49(4), 490–493 (2009)

    MathSciNet  Google Scholar 

  28. Hao, K., Guo, X., Li, X.: The Pi+ Calculus-An extension of the pi calculus for expressing petri nets. Chin. J. Comput. 34(2), 193–203 (2011)

    Article  MathSciNet  Google Scholar 

  29. Xu, Y., Gao, P., Liu, Z., Xu, P.: Armed forces knowledge management risk evaluation based on FNN. In: Proceedings of the International Conference on Industrial Engineering and Engineering Management, pp. 1833–1837(2011)

    Google Scholar 

  30. Roy, N., Dubey, A., Gokhale, A., Dowdy, L.: A capacity planning process for performance assurance of component-based distributed systems. In: Proceedings of the International Conference on Performance Engineering - A Joint Meeting of WOSP/SIPEW, pp. 259–270 (2011)

    Google Scholar 

  31. Bliudze, S., Sifakis, J.: Synthesizing glue operators from glue constraints for the construction of component-based systems. In: Proceedings of the International Conference on Software Composition, pp. 51–67 (2011)

    Google Scholar 

  32. Dang, T., Jeannet, B., Testylier, R.: Verification of embedded control program. In: Proceedings of the European Control Conference (ECC 2013), pp. 4252–4256 (2013)

    Google Scholar 

  33. Yan, Y., Wang, W., Wu, H.: Research and implementation of embedded PLC Domain-oriented Component-based model. Comput. Appl. Softw. 29(2), 125–128 (2012)

    MathSciNet  Google Scholar 

  34. Lee, E.: The past, present and future of cyber-physical systems: a focus on models. Sensors 15(3), 4837–4869 (2015)

    Article  Google Scholar 

  35. Guo, B., Zeng, S., et al.: Hierarchical control and data flow graph modeling method in energy-aware hardware/software partitioning. Sichuan Daxue Xuebao 43(4), 83–88 (2011)

    Google Scholar 

  36. Sztipanovits, J., Bapty, T., Neema, S., Howard, L., Jackson, E.: OpenMETA: a model- and component-based design tool chain for cyber-physical systems. In: Bensalem, S., Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 235–248. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54848-2_16

    Chapter  Google Scholar 

  37. Poovendran, R.: Cyber-physical systems: close encounters between two parallel worlds. Proc. IEEE 98(8), 1363–1366 (2010)

    Article  Google Scholar 

  38. Wan, K., Hughes, D., Man, K., et al.: investigation on composition mechanisms for cyber physical systems. Int. J. Des. Anal. Tools Circuits Syst. 2(1), 30–40 (2011)

    Google Scholar 

  39. Liu, Z., Yang, D., Wen, D., Zhang, W., Mao, W.: Cyber-physical-social systems for command and control. IEEE Intell. Syst. 26(4), 492–496 (2011)

    Article  Google Scholar 

  40. Zeigler, B.: Requirements for standards based dynamic interoperation of critical infrastructure models. In: Proceedings of the Workshop on Grand Challengers in Modeling, Simulation, and Analysis for Homeland Security, pp. 1–5 (2010)

    Google Scholar 

  41. Liu, C., Wang, W., Zhu, Y.: Research on a composable modeling approach of embedding the state machine into DEVS. J. Nat. Univ. Defense Technol. 27(5), 56–61 (2005)

    Google Scholar 

  42. Taha, W., Brauner, P., Zeng, Y., et al.: A core language for executable models of cyber-physical systems. In: Proceedings of the International Conference on Distributed Computing Systems Workshops (ICDCSW 2012), pp. 303–308 (2012)

    Google Scholar 

  43. Eidson, J., Lee, E., Matic, S., Seshia, S., Zou, J.: A time-centric model for cyber-physical applications. In: Proceedings of the International Workshop on Model Based Architecting and Construction of Embedded System, pp. 21–35 (2010)

    Google Scholar 

  44. Zhang, Z., Eyisi, E., Koutsoukos, X., et al.: A co-simulation framework for design of time-triggered automotive cyber physical systems. Simul. Model. Pract. Theory 43(4), 16–33 (2014)

    Article  Google Scholar 

  45. Talcott, C.: Cyber-physical systems and events. In: Wirsing, M., BanĂ¢tre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing Paradigms. LNCS, vol. 5380, pp. 101–115. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89437-7_6

    Chapter  Google Scholar 

  46. Parolini, L., Sinopoli, B., Krogh, B., Wang, Z.: A cyber-physical systems approach to data center modeling and control for energy efficiency. Proc. IEEE 100(1), 254–268 (2012)

    Article  Google Scholar 

  47. Saber, A., Venayagamoorthy, G.: Efficient utilization of renewable energy sources by gridable vehicles in cyber-physical energy systems. IEEE Syst. J. 4(3), 285–294 (2010)

    Article  Google Scholar 

  48. Saeedloei, N., Gupta, G.: A logic-based modeling and verification of CPS. In: Proceedings of the ACM SIGBED Review - Work-in-Progress (WiP) Session of the 2nd International Conference on Cyber Physical Systems, vol. 8(2), pp. 31–34(2011)

    Google Scholar 

  49. Lin, J., Sedigh, S., Hurson, R.: An agent-based approach to reconciling data heterogeneity in cyber-physical systems. In: IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp. 93–103 (2011)

    Google Scholar 

  50. Xie, K., Chen, H., Li, C.: PMDA: a physical model driven software architecture for internet of things. J. Comput. Res. Dev. 50(6), 1185–1197 (2013)

    Google Scholar 

  51. Pan, G., Li, S., Chen, Y.: ScudContext: large-scale environmental context services infrastructure towards cyber-physical space integration. J. Zhejiang Univ. (Eng. Sci.) 45(6), 990–991 (2011)

    Google Scholar 

  52. Zhao, J., Wen, F., Xue, Y., Dong, Z.: Modeling analysis and control research framework of cyber physical power systems. Autom. Electr. Power Syst. 35(16), 1–8 (2011)

    Google Scholar 

  53. Ma, H., Song, Y., Yu, S., Ma, H., Song, Y., Yu, S., et al.: The research of IoT architecture model and internetworking mechanism. Sci. Sinica 43(10), 1183–1197 (2013)

    Google Scholar 

  54. Krishna, V., Saritha, V., Sultana, P.: Cyber physical internet. challenges, opportunities, and dimensions of cyber-physical systems. pp. 76–97 (2015)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank our colleagues and students in Engineering Technology Research Center of Network and Information Security at Anhui Normal University. We thank National Natural Science Foundation of China under Grant No. 61572036, University Natural Science Research Project of Anhui Province under Grant No. KJ2014A084, Anhui Province University Outstanding Youth Talent Support Program under Grant No. gxyqZD2016026 and Anhui Provincial Natural Science Foundation under Grant No. 1708085MF156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Liu, C. et al. (2017). Characteristic, Architecture, Technology, and Design Methodology of Cyber-Physical Systems. In: Chen, F., Luo, Y. (eds) Industrial IoT Technologies and Applications. Industrial IoT 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-319-60753-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60753-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60752-8

  • Online ISBN: 978-3-319-60753-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics