Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism

  • Arwa A. Abugable
  • Dahlia A. Awwad
  • Dalia Fleifel
  • Mohamed M. Ali
  • Sherif El-Khamisy
  • Menattallah ElserafyEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1007)


Yeast research has been tremendously contributing to the understanding of a variety of molecular pathways due to the ease of its genetic manipulation, fast doubling time as well as being cost-effective. The understanding of these pathways did not only help scientists learn more about the cellular functions but also assisted in deciphering the genetic and cellular defects behind multiple diseases. Hence, yeast research not only opened the doors for transforming basic research into applied research, but also paved the roads for improving diagnosis and innovating personalized therapy of different diseases. In this chapter, we discuss how yeast research has contributed to understanding major genome maintenance pathways such as the S-phase checkpoint activation pathways, repair via homologous recombination and non-homologous end joining as well as topoisomerases-induced protein linked DNA breaks repair. Defects in these pathways lead to neurodegenerative diseases and cancer. Thus, the understanding of the exact genetic defects underlying these diseases allowed the development of personalized medicine, improving the diagnosis and treatment and overcoming the detriments of current conventional therapies such as the side effects, toxicity as well as drug resistance.


Personalized medicine Yeast DNA repair Genome maintenance DNA damage repair Homologous recombination repair Non-homologous end joining TDP1 TDP2 DNA damage checkpoint 



This work is funded by a grant from Zewail City to Sherif El-Khamisy. The authors would like to thank members of the Center of Genomics at Zewail City for help and useful discussions.


  1. 1.
    Goffeau A et al (1996) Life with 6000 genes. Science 274:546–567PubMedCrossRefGoogle Scholar
  2. 2.
    Mohammadi S, Saberidokht B, Subramaniam S, Grama A (2015) Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC Syst Biol 9:96PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Stearns T, Ma H, Botstein D (1990) Manipulating yeast genome using plasmid vectors. Methods Enzymol 185:280–297PubMedCrossRefGoogle Scholar
  4. 4.
    Gardner JM, Jaspersen SL (2014) Manipulating the yeast genome: deletion, mutation, and tagging by PCR. Methods Mol Biol 1205:45–78PubMedCrossRefGoogle Scholar
  5. 5.
    Janke C et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962PubMedCrossRefGoogle Scholar
  6. 6.
    Dudášová Z, Dudáš A, Chovanec M (2004) Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28:581–601PubMedCrossRefGoogle Scholar
  7. 7.
    Aylon Y, Kupiec M (2004) DSB repair: the yeast paradigm. DNA Repair 3:797–815PubMedCrossRefGoogle Scholar
  8. 8.
    Prakash S, Prakash L (2000) Nucleotide excision repair in yeast. Mutat Res 451:13–24PubMedCrossRefGoogle Scholar
  9. 9.
    Hamperl S, Cimprich KA (2014) The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 19:84–94CrossRefGoogle Scholar
  10. 10.
    Bonner JN, Zhao X (2016) Replication-associated recombinational repair: lessons from budding yeast. Genes 7Google Scholar
  11. 11.
    Ashour ME, Atteya R, El-Khamisy SF (2015) Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat Rev Cancer 15:137–151PubMedCrossRefGoogle Scholar
  12. 12.
    Boiteux S, Jinks-Robertson S (2013) DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae. Genetics 193:1025–1064PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Labib K, De Piccoli G (2011) Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Philos Trans R Soc B Biol Sci 366:3554–3561CrossRefGoogle Scholar
  14. 14.
    Beach D, Durkacz B, Nurse P (1982) Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300:706–709PubMedCrossRefGoogle Scholar
  15. 15.
    Nurse P (2002) Cyclin dependent kinases and cell cycle control (nobel lecture). Chembiochem 3:596–603PubMedCrossRefGoogle Scholar
  16. 16.
    Lee MG, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327:31–35PubMedCrossRefGoogle Scholar
  17. 17.
    Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508PubMedCrossRefGoogle Scholar
  18. 18.
    Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5:792–804PubMedCrossRefGoogle Scholar
  19. 19.
    Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279:20067–20075PubMedCrossRefGoogle Scholar
  20. 20.
    Melo J, Toczyski D (2002) A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 14:237–245PubMedCrossRefGoogle Scholar
  21. 21.
    Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5Google Scholar
  22. 22.
    Weinert TA, Kiser GL, Hartwell LH (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8:652–665PubMedCrossRefGoogle Scholar
  23. 23.
    Kato R, Ogawa H (1994) An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res 22:3104–3112PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lustig AJ, Petes TD (1986) Identification of yeast mutants with altered telomere structure. Proc Natl Acad Sci U S A 83:1398–1402PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Keith CT, Schreiber SL (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270:50–51PubMedCrossRefGoogle Scholar
  26. 26.
    Jackson SP (1996) The recognition of DNA damage. Curr Opin Genet Dev 6:19–25PubMedCrossRefGoogle Scholar
  27. 27.
    Greenwell PW et al (1995) TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82:823–829PubMedCrossRefGoogle Scholar
  28. 28.
    Morrow DM, Tagle DA, Shiloh Y, Collins FS, Hieter P (1995) TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82:831–840PubMedCrossRefGoogle Scholar
  29. 29.
    Foiani M et al (2000) DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat Res 451:187–196PubMedCrossRefGoogle Scholar
  30. 30.
    Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672PubMedCrossRefGoogle Scholar
  31. 31.
    Cimprich KA, Shin TB, Keith CT, Schreiber SL (1996) cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci U S A 93:2850–2855PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Walworth N, Davey S, Beach D (1993) Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363:368–371PubMedCrossRefGoogle Scholar
  33. 33.
    Sanchez Y et al (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501PubMedCrossRefGoogle Scholar
  34. 34.
    Game JC, Mortimer RK (1974) A genetic study of X-ray sensitive mutants in yeast. Mutat Res Fundam Mol Mech Mutagen 24:281–292CrossRefGoogle Scholar
  35. 35.
    Zheng P et al (1993) SPK1 is an essential S-phase-specific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosine kinase. Mol Cell Biol 13:5829–5842PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ (1994) The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8:2401–2415PubMedCrossRefGoogle Scholar
  37. 37.
    Lopes M et al (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561PubMedCrossRefGoogle Scholar
  38. 38.
    Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897PubMedCrossRefGoogle Scholar
  39. 39.
    Savitsky K et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753PubMedCrossRefGoogle Scholar
  40. 40.
    Shiloh Y (2003) ATM: ready, set, go. Cell Cycle 2:116–117PubMedCrossRefGoogle Scholar
  41. 41.
    Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168PubMedCrossRefGoogle Scholar
  42. 42.
    Kastan MB et al (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597PubMedCrossRefGoogle Scholar
  43. 43.
    Kuhne M et al (2004) A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 64:500–508PubMedCrossRefGoogle Scholar
  44. 44.
    Painter RB, Young BR (1980) Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci U S A 77:7315–7317PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Shiloh Y, Kastan MB (2001) ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 83:209–254PubMedCrossRefGoogle Scholar
  46. 46.
    Lee P et al (2013) SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nat Commun 4:1824PubMedCrossRefGoogle Scholar
  47. 47.
    Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606PubMedCrossRefGoogle Scholar
  48. 48.
    O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA (2003) A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33:497–501PubMedCrossRefGoogle Scholar
  49. 49.
    Scalet D et al (2017) Exploring splicing-switching molecules for Seckel Syndrome Therapy. Biochim Biophys Acta Mol basis Dis 1863:15–20CrossRefGoogle Scholar
  50. 50.
    Mu K et al (2011) Detection of CHK1 and CCND1 gene copy number changes in breast cancer with dual-colour fluorescence in-situ hybridization. Histopathology 58:601–607PubMedCrossRefGoogle Scholar
  51. 51.
    Arora S et al (2010) RNAi screening of the kinome identifies modulators of cisplatin response in ovarian cancer cells. Gynecol Oncol 118:220–227PubMedCrossRefGoogle Scholar
  52. 52.
    Bennett CN et al (2012) Cross-species genomic and functional analyses identify a combination therapy using a CHK1 inhibitor and a ribonucleotide reductase inhibitor to treat triple-negative breast cancer. Breast Cancer Res 14:R109PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cole KA et al (2011) RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma. Proc Natl Acad Sci U S A 108:3336–3341PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang Y, Hunter T (2014) Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 134:1013–1023PubMedCrossRefGoogle Scholar
  55. 55.
    Lecona E, Fernández-Capetillo O (2014) Replication stress and cancer: it takes two to tango. Exp Cell Res 329:26–34PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Brooks K et al (2012) A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene 32:1–9Google Scholar
  57. 57.
    Carrassa L, Damia G (2011) Unleashing Chk1 in cancer therapy. Cell Cycle 10:2121–2128PubMedCrossRefGoogle Scholar
  58. 58.
    Maugeri-Sacca M, Bartucci M, De Maria R (2013) Checkpoint kinase 1 inhibitors for potentiating systemic anticancer therapy. Cancer Treat Rev 39:525–533PubMedCrossRefGoogle Scholar
  59. 59.
    Antoni L, Sodha N, Collins I, Garrett MD (2007) CHK2 kinase: cancer susceptibility and cancer therapy – two sides of the same coin? Nat Rev Cancer 7:925–936PubMedCrossRefGoogle Scholar
  60. 60.
    Ding L et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Jiang H et al (2009) The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23:1895–1909PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Salimi M, Mozdarani H, Majidzadeh K (2012) Expression pattern of ATM and cyclin D1 in ductal carcinoma, normal adjacent and normal breast tissues of Iranian breast cancer patients. Med Oncol 29:1502–1509PubMedCrossRefGoogle Scholar
  63. 63.
    Haidar MA et al (2000) ATM gene deletion in patients with adult acute lymphoblastic leukemia. Cancer 88:1057–1062PubMedCrossRefGoogle Scholar
  64. 64.
    Biankin AV et al (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491:399–405PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ripolles L et al (2006) Genetic abnormalities and clinical outcome in chronic lymphocytic leukemia. Cancer Genet Cytogenet 171:57–64PubMedCrossRefGoogle Scholar
  66. 66.
    Kim DS et al (2009) Epigenetic inactivation of checkpoint kinase 2 gene in non-small cell lung cancer and its relationship with clinicopathological features. Lung Cancer 65:247–250PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang P et al (2004) CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer. Mol Cancer 3:14PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ertych N et al (2014) Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells. Nat Cell Biol 16:779–791PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bell DW et al (1999) Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2528–2531PubMedCrossRefGoogle Scholar
  70. 70.
    Shaag A et al (2005) Functional and genomic approaches reveal an ancient CHEK2 allele associated with breast cancer in the Ashkenazi Jewish population. Hum Mol Genet 14:555–563PubMedCrossRefGoogle Scholar
  71. 71.
    Bartkova J et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870PubMedCrossRefGoogle Scholar
  72. 72.
    Mahajan K et al (2012) Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J Biol Chem 287:22112–22122PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Alkema NG et al (2014) Checkpoint kinase 2 (Chk2) supports sensitivity to platinum-based treatment in high grade serous ovarian cancer. Gynecol Oncol 133:591–598PubMedCrossRefGoogle Scholar
  74. 74.
    DiTullio RA et al (2002) 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4:998–1002PubMedCrossRefGoogle Scholar
  75. 75.
    Lainchbury M et al (2012) Discovery of 3-alkoxyamino-5-(pyridin-2-ylamino)pyrazine-2-carbonitriles as selective, orally bioavailable CHK1 inhibitors. J Med Chem 55:10229–10240PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wang F-Z et al (2014) The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis 19:1389–1398PubMedCrossRefGoogle Scholar
  77. 77.
    Davies KD et al (2011) Single-agent inhibition of Chk1 is antiproliferative in human cancer cell lines in vitro and inhibits tumor xenograft growth in vivo. Oncol Res Featuring Preclinical Clin Cancer Ther 19:349–363CrossRefGoogle Scholar
  78. 78.
    Foote KM et al (2013) Discovery of 4-{4-[(3 R )-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1 H -indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J Med Chem 56:2125–2138PubMedCrossRefGoogle Scholar
  79. 79.
    Golding SE et al (2009) Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther 8:2894–2902PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Golding SE et al (2012) Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle 11:1167–1173PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Biddlestone-Thorpe L et al (2013) ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin Cancer Res 19:3189–3200PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Roossink F et al (2011) The role of ATM and 53BP1 as predictive markers and therapeutic targets in cervical cancer. Int J Gynecol Cancer 21:S196Google Scholar
  83. 83.
    Hickson I et al (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64:9152–9159PubMedCrossRefGoogle Scholar
  84. 84.
    Vecchio D et al (2015) Pharmacokinetics, pharmacodynamics and efficacy on pediatric tumors of the glioma radiosensitizer KU60019. Int J Cancer 136:1445–1457PubMedCrossRefGoogle Scholar
  85. 85.
    Pires IM et al (2012) Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br J Cancer 107:291–299PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Fokas E et al (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 3:e441PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Charrier JD et al (2011) Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem 54:2320–2330PubMedCrossRefGoogle Scholar
  88. 88.
    Yang H et al (2011) Inhibition of checkpoint kinase 1 sensitizes lung cancer brain metastases to radiotherapy. Biochem Biophys Res Commun 406:53–58PubMedCrossRefGoogle Scholar
  89. 89.
    Jobson AG et al (2009) Cellular inhibition of checkpoint kinase 2 (Chk2) and potentiation of camptothecins and radiation by the novel Chk2 inhibitor PV1019 [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide]. J Pharmacol Exp Ther 331:816–826PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kleiman LB, Krebs AM, Kim SY, Hong TS, Haigis KM (2013) Comparative analysis of radiosensitizers for K-RAS mutant rectal cancers. PLoS One 8Google Scholar
  91. 91.
    Riesterer O et al (2011) A novel Chk inhibitor, XL-844, increases human cancer cell radiosensitivity through promotion of mitotic catastrophe. Investig New Drugs 29:514–522CrossRefGoogle Scholar
  92. 92.
    Mitchell JB et al (2010) In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762. Clin Cancer Res 16:2076–2084PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Morgan MA et al (2010) Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res 70:4972–4981PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Borst GR et al (2013) Targeted radiosensitization by the Chk1 inhibitor SAR-020106. Int J Radiat Oncol Biol Phys 85:1110–1118PubMedCrossRefGoogle Scholar
  95. 95.
    Rawlinson R, Massey AJ (2014) γH2AX and Chk1 phosphorylation as predictive pharmacodynamic biomarkers of Chk1 inhibitor-chemotherapy combination treatments. BMC Cancer 14:483PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Höglund A et al (2011) Therapeutic implications for the induced levels of Chk1 in Myc-expressing cancer cells. Clin Cancer Res 17:7067–7079PubMedCrossRefGoogle Scholar
  97. 97.
    Manic G, Obrist F, Sistigu A, Vitale I (2015) Trial watch: targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol Cell Oncol 2:e1012976PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Krajewska M et al (2015) ATR inhibition preferentially targets homologous recombination-deficient tumor cells. Oncogene 34:3474–3481PubMedCrossRefGoogle Scholar
  99. 99.
    Rainey MD, Charlton ME, Stanton RV, Kastan MB (2008) Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res 68:7466–7474PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hall AB et al (2014) Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget 5:5674–5685PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kwok M et al (2016) ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood 127:582–595PubMedCrossRefGoogle Scholar
  102. 102.
    Patel R et al (2017) An orally bioavailable Chk1 inhibitor, CCT244747, sensitizes bladder and head and neck cancer cell lines to radiation. Radiother Oncol 400:2–7Google Scholar
  103. 103.
    Liu R et al (2017) The depletion of ATM inhibits colon cancer proliferation and migration via B56γ2-mediated Chk1/p53/CD44 cascades. Cancer Lett 390:48–57PubMedCrossRefGoogle Scholar
  104. 104.
    Bryant HE, Helleday T (2006) Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 34:1685–1691PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Gilardini Montani MS et al (2013) ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition. J Exp Clin Cancer Res 32:95PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Williamson CT et al (2010) ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther 9:347–357PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Höglund A, Strömvall K, Li Y, Forshell LP, Nilsson JA (2011) Chk2 deficiency in Myc overexpressing lymphoma cells elicits a synergistic lethal response in combination with PARP inhibition. Cell Cycle 10:3598–3607PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Nguyen TNT et al (2012) Radioprotection by hymenialdisine-derived checkpoint kinase 2 inhibitors. ACS Chem Biol 7:172–184PubMedCrossRefGoogle Scholar
  109. 109.
    Arienti KL et al (2005) Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem 48:1873–1885PubMedCrossRefGoogle Scholar
  110. 110.
    Benada J, Macurek L, Heyer W-D, Helleday T, Hanaoka F (2015) Targeting the checkpoint to kill cancer cells. Biomol Ther 5:1912–1937Google Scholar
  111. 111.
    Wang J, Han X, Zhang Y (2012) Autoregulatory mechanisms of phosphorylation of checkpoint kinase 1. Cancer Res 72:3786–3794PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Daud AI et al (2015) Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol 33:1060–1066PubMedCrossRefGoogle Scholar
  113. 113.
    Dees EC et al (2005) A phase I and pharmacokinetic study of short infusions of UCN-01 in patients with refractory solid tumors. Clin Cancer Res 11:664–671PubMedGoogle Scholar
  114. 114.
    Shapiro G et al (2011) Phase I studies of CBP501, a G2 checkpoint abrogator, as monotherapy and in combination with cisplatin in patients with advanced solid tumors. Clin Cancer Res 17:3431–3442PubMedCrossRefGoogle Scholar
  115. 115.
    Wickremsinhe ER et al (2014) Disposition and metabolism of LY2603618, a Chk-1 inhibitor following intravenous administration in patients with advanced and/or metastatic solid tumors. Xenobiotica 44:827–841PubMedCrossRefGoogle Scholar
  116. 116.
    Hynes SM et al (2015) Evaluation of the likelihood of a selective CHK1 inhibitor (LY2603618) to inhibit CYP2D6 with desipramine as a probe substrate in cancer patients. Biopharm Drug Dispos 36:49–63PubMedCrossRefGoogle Scholar
  117. 117.
    Sausville E et al (2014) Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol 73:539–549PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Pâques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404PubMedPubMedCentralGoogle Scholar
  119. 119.
    Andersen SL, Sekelsky J (2010) Meiotic versus mitotic recombination: two different routes for double-strand break repair. BioEssays 32:1058–1066PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Jensen RB, Carreira A, Kowalczykowski SC (2010) Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678–683PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Liu J, Doty T, Gibson B, Heyer W-D (2010) Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 17:1260–1262PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Feng Z et al (2011) Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci U S A 108:686–691PubMedCrossRefGoogle Scholar
  123. 123.
    Krejci L, Altmannova V, Spirek M, Zhao X (2012) Homologous recombination and its regulation. Nucleic Acids Res 40:5795–5818PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257PubMedCrossRefGoogle Scholar
  125. 125.
    Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670., table of contentsPubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Zhao W et al (2015) Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry. Mol Cell 59:176–187PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Mazin AV, Mazina OM, Bugreev DV, Rossi MJ (2010) Rad54, the motor of homologous recombination. DNA Repair 9:286–302PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Resnick MA, Martin P (1976) The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. MGG Mol Gen Genet 143:119–129PubMedCrossRefGoogle Scholar
  129. 129.
    Ho KS (1975) Induction of DNA double-strand breaks by X-rays in a radiosensitive strain of the yeast Saccharomyces cerevisiae. Mutat Res 30:327–334PubMedCrossRefGoogle Scholar
  130. 130.
    Mowat MRA (1979) Repair of γ-ray induced DNA strand breaks in radiation sensitive mutants of yeast. at
  131. 131.
    Prakash L, Taillon-Miller P (1981) Effects of the rad52 gene on sister chromatid recombination in Saccharomyces cerevisiae. Curr Genet 3:247–250PubMedCrossRefGoogle Scholar
  132. 132.
    Prakash S, Prakash L, Burke W, Montelone BA (1980) Effects of the RAD52 gene on recombination in Saccharomyces cerevisiae. Genetics 94:31 LP–31 50Google Scholar
  133. 133.
    Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470PubMedCrossRefGoogle Scholar
  134. 134.
    Ivanov EL, Korolev VG, Fabre F (1992) XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132:651–664PubMedPubMedCentralGoogle Scholar
  135. 135.
    Ajimura M, Leem S-H, Ogawa H (1993) Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133:51–66PubMedPubMedCentralGoogle Scholar
  136. 136.
    Shinohara A et al (1993) Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat Genet 4:239–243PubMedCrossRefGoogle Scholar
  137. 137.
    Muris DF et al (1994) Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination. Mutat Res 315:295–305PubMedCrossRefGoogle Scholar
  138. 138.
    Johzuka K, Ogawa H (1995) Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139:1521–1532PubMedPubMedCentralGoogle Scholar
  139. 139.
    Hays SL, Firmenich AA, Berg P (1995) Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc Natl Acad Sci U S A 92:6925–6929PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Jiang H et al (1996) Direct association between the yeast Rad51 and Rad54 recombination proteins. J Biol Chem 271:33181–33186PubMedCrossRefGoogle Scholar
  141. 141.
    Petrini JHJ et al (1995) Isolation and characterization of the human MRE11 homolog. Genomics 29:80–86PubMedCrossRefGoogle Scholar
  142. 142.
    Dolganov GM et al (1996) Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol 16:4832–4841PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Varon R et al (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93:467–476PubMedCrossRefGoogle Scholar
  144. 144.
    Borde V (2007) The multiple roles of the Mre11 complex for meiotic recombination. Chromosom Res 15:551–563CrossRefGoogle Scholar
  145. 145.
    Rass E et al (2009) Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol 16:819–824PubMedCrossRefGoogle Scholar
  146. 146.
    Sung P (1997) Communications: function of yeast Rad52 protein as a function of yeast Rad52 protein as a mediator between. 1–5. doi:10.1074/jbc.272.45.28194Google Scholar
  147. 147.
    Sung P (1997) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11:1111–1121PubMedCrossRefGoogle Scholar
  148. 148.
    Benson FE, Baumann P, West SC (1998) Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391:401–404PubMedCrossRefGoogle Scholar
  149. 149.
    Stein A, Kalifa L, Sia EA (2015) Members of the RAD52 epistasis group contribute to mitochondrial homologous recombination and double-strand break repair in Saccharomyces cerevisiae. PLoS Genet 11:1–20Google Scholar
  150. 150.
    Waltes R et al (2009) Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet 84:605–616PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Damiola F et al (2014) Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Res 16:R58PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Heikkinen K (2003) Mutation screening of Mre11 complex genes: indication of RAD50 involvement in breast and ovarian cancer susceptibility. J Med Genet 40:131e–1131CrossRefGoogle Scholar
  153. 153.
    Heikkinen K et al (2006) RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis 27:1593–1599PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Zheng J et al (2011) Functional NBS1 polymorphism is associated with occurrence and advanced disease status of nasopharyngeal carcinoma. Mol Carcinog 50:689–696PubMedCrossRefGoogle Scholar
  155. 155.
    Loveday C et al (2011) Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet 43:879–882PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Meindl A et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414PubMedCrossRefGoogle Scholar
  157. 157.
    Kalvala A et al (2014) Overexpression of Rad51C splice variants in colorectal tumors. Oncotarget 6:1–11Google Scholar
  158. 158.
    Depienne C et al (2012) RAD51 haploinsufficiency causes congenital mirror movements in humans. Am J Hum Genet 90:301–307PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Han H et al (2002) Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62:2890–2896PubMedGoogle Scholar
  160. 160.
    Nagathihalli NS, Nagaraju G (2011) RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta – Rev Cancer 1816:209–218CrossRefGoogle Scholar
  161. 161.
    Tennstedt P et al (2013) RAD51 overexpression is a negative prognostic marker for colorectal adenocarcinoma. Int J Cancer 132:2118–2126PubMedCrossRefGoogle Scholar
  162. 162.
    Qiao G-B et al (2005) High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br J Cancer 93:137–143PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Hannay JAF et al (2007) Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells: a role for p53/activator protein 2 transcriptional regulation. Mol Cancer Ther 6:1650–1660PubMedCrossRefGoogle Scholar
  164. 164.
    Lim DS, Hasty P (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16:7133–7143PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Alagpulinsa DA, Ayyadevara S, Shmookler Reis RJ (2014) A small-molecule inhibitor of RAD51 reduces homologous recombination and sensitizes multiple myeloma cells to doxorubicin. Front Oncol 4:289PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Huang F, Mazin AV (2014) A small molecule inhibitor of human RAD51 potentiates breast cancer cell killing by therapeutic agents in mouse xenografts. PLoS One 9Google Scholar
  167. 167.
    Ito M et al (2005) Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin. J Gene Med 7:1044–1052PubMedCrossRefGoogle Scholar
  168. 168.
    Lai T-H et al (2016) HDAC inhibition induces MicroRNA-182, which targets RAD51 and impairs HR tepair to sensitize cells to sapacitabine in acute myelogenous leukemia. Clin Cancer Res 22:3537–3549PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Russell JS et al (2003) Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 63:7377–7383PubMedGoogle Scholar
  170. 170.
    Tsai M-S, Kuo Y-H, Chiu Y-F, Su Y-C, Lin Y-W (2010) Down-regulation of Rad51 expression overcomes drug resistance to gemcitabine in human non-small-cell lung cancer cells. J Pharmacol Exp Ther 335:830–840PubMedCrossRefGoogle Scholar
  171. 171.
    Quiros S, Roos WP, Kaina B (2011) Rad51 and BRCA2-New molecular targets for sensitizing glioma cells to alkylating anticancer drugs. PLoS One 6:e27183PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Kim PM, Allen C, Wagener BM, Shen Z, Nickoloff JA (2001) Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells. Nucleic Acids Res 29:4352–4360PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Mason JM et al (2014) The rad51-stimulatory compound rs-1 can exploit the rad51 overexpression that exists in cancer cells and tumors. Cancer Res 74:3546–3555PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Siraj AK et al (2008) RAD52 polymorphisms contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. J Endocrinol Investig 31:893–899CrossRefGoogle Scholar
  175. 175.
    Gonzalez R et al (1999) Detection of loss of heterozygosity at RAD51, RAD52, RAD54 and BRCA1 and BRCA2 loci in breast cancer: pathological correlations. Br J Cancer 81:503PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Lieberman R et al (2015) Functional characterization of RAD52 as a lung cancer susceptibility gene in the 12p13. 33 locus. Mol CarcinogGoogle Scholar
  177. 177.
    Jiang Y et al (2013) Genetic variation in a hsa-let-7 binding site in RAD52 is associated with breast cancer susceptibility. Carcinogenesis 34:689–693PubMedCrossRefGoogle Scholar
  178. 178.
    Feng Z et al (2011) Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci 108:686–691PubMedCrossRefGoogle Scholar
  179. 179.
    Sullivan K et al (2016) Identification of a Small Molecule Inhibitor of RAD52 by Structure-Based Selection. PLoS One 11:e0147230PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Huang F et al (2016) Targeting BRCA1- and BRCA2-deficient cells with RAD52 small molecule inhibitors. Nucleic Acids Res 44:gkw087Google Scholar
  181. 181.
    Sullivan K et al (2015) Identification of a Small Molecule Inhibitor of RAD52 to Induce Synthetic Lethality in BRCA-Deficient Leukemias. Blood 126:4434Google Scholar
  182. 182.
    Zha S et al (2011) ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature 469:250–254PubMedCrossRefGoogle Scholar
  183. 183.
    Woodbine L et al (2013) PRKDC mutations in a SCID patient with profound neurological abnormalities. J Clin Invest 123:2969–2980PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Helmink BA, Sleckman BP (2012) The response to and repair of RAG-mediated DNA double-strand breaks. Annu Rev Immunol 30:175–202PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Hefferin ML, Tomkinson AE (2005) Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair 4:639–648PubMedCrossRefGoogle Scholar
  186. 186.
    Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2:130–143PubMedPubMedCentralGoogle Scholar
  187. 187.
    Zhang Z et al (2004) Solution structure of the C-terminal domain of Ku80 suggests important sites for protein-protein interactions. Structure 12:495–502PubMedCrossRefGoogle Scholar
  188. 188.
    Weterings E, Van Gent DC (2004) The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair 3:1425–1435PubMedCrossRefGoogle Scholar
  189. 189.
    Bernstein NK et al (2005) The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol Cell 17:657–670PubMedCrossRefGoogle Scholar
  190. 190.
    Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794PubMedCrossRefGoogle Scholar
  191. 191.
    Perry JJP et al (2006) WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat Struct Mol Biol 13:414–422PubMedCrossRefGoogle Scholar
  192. 192.
    Wang C, Lees-Miller SP (2013) Detection and repair of ionizing radiation-induced dna double strand breaks: new developments in nonhomologous end joining. Int J Radiat Oncol Biol Phys 86:440–449PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Johnston LH, Nasmyth KIMA (1978) Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature 274:891–893PubMedCrossRefGoogle Scholar
  194. 194.
    Robins P, Lindahl T (1996) DNA ligase IV from HeLa cell nuclei. J Biol Chem 271:24257–24261PubMedCrossRefGoogle Scholar
  195. 195.
    Wei YF et al (1995) Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol Cell Biol 15:3206–3216PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Tomkinson AE, Roberts E, Daly G, Totty NF, Lindahl T (1991) Three distinct DNA ligases in mammalian cells. J Biol Chem 266:21728–21735PubMedGoogle Scholar
  197. 197.
    Teo S, Jackson SP (1997) Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J. 16:4788 LP–4784795CrossRefGoogle Scholar
  198. 198.
    Grawunder U et al (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495PubMedCrossRefGoogle Scholar
  199. 199.
    Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA Ligase IV complex to promote DNA nonhomologous end-joining. Cell 124:301–313PubMedCrossRefGoogle Scholar
  200. 200.
    Lazzerini-Denchi E, Sfeir A (2016) Stop pulling my strings-what telomeres taught us about the DNA damage response. Nat Rev Mol Cell Biol 17Google Scholar
  201. 201.
    O’Driscoll M et al (2001) DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 8:1175–1185PubMedCrossRefGoogle Scholar
  202. 202.
    Chistiakov D, Ligase A (2010) IV syndrome. Adv Exp Med Biol 685:175–185PubMedCrossRefGoogle Scholar
  203. 203.
    Riballo E et al (1999) Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol 9:699–702PubMedCrossRefGoogle Scholar
  204. 204.
    Riballo E et al (2001) Cellular and biochemical impact of a mutation in DNA ligase IV conferring clinical radiosensitivity. J Biol Chem 276:31124–31132PubMedCrossRefGoogle Scholar
  205. 205.
    Bryans M, Valenzano MC, Stamato TD (1999) Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat Res – DNA Repair 433:53–58PubMedCrossRefGoogle Scholar
  206. 206.
    Altmann T, Gennery AR (2016) DNA ligase IV syndrome; a review. Orphanet J Rare Dis 11:137PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Shackelford DA (2006) DNA end joining activity is reduced in Alzheimer’s disease. Neurobiol Aging 27:596–605PubMedCrossRefGoogle Scholar
  208. 208.
    Kanungo J (2016) DNA-PK deficiency in Alzheimer’s disease. J Neurol Neuromedicine 1:17–22PubMedPubMedCentralGoogle Scholar
  209. 209.
    Cipe FE et al (2014) Cernunnos/XLF deficiency: a syndromic primary immunodeficiency. Case Rep Pediatr 2014:614238PubMedPubMedCentralGoogle Scholar
  210. 210.
    Brady N, Gaymes TJ, Cheung M, Mufti GJ, Rassool FV (2003) Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res 63:1798–1805PubMedGoogle Scholar
  211. 211.
    Pascale RM et al (2016) DNA-PKcs: a promising therapeutic target in human hepatocellular carcinoma? DNA Repair 47:12–20PubMedCrossRefGoogle Scholar
  212. 212.
    Cornell L et al (2015) DNA-PK- A candidate driver of hepatocarcinogenesis and tissue biomarker that predicts response to treatment and survival. Clin Cancer Res 21:925–933PubMedCrossRefGoogle Scholar
  213. 213.
    Munck JM et al (2012) Chemosensitization of cancer cells by KU-0060648, a dual inhibitor of DNA-PK and PI-3K. Mol Cancer Ther 11:1789–1798PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Velic D et al (2015) DNA damage signalling and repair inhibitors: the long-sought-after Achilles’ heel of cancer. Biomol Ther 5:3204–3259Google Scholar
  215. 215.
    Beskow C et al (2009) Radioresistant cervical cancer shows upregulation of the NHEJ proteins DNA-PKcs, Ku70 and Ku86. Br J Cancer 101:816–821PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Sallmyr A, Tomkinson AE, Rassool FV (2008) Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 112:1413–1423PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Tomkinson AE, Howes TRL, Wiest NE (2013) DNA ligases as therapeutic targets. Transl Cancer Res 2:203–214Google Scholar
  218. 218.
    Leong T, Chao M, Bassal S, McKay M (2003) Radiation-hypersensitive cancer patients do not manifest protein expression abnormalities in components of the nonhomologous end-joining (NHEJ) pathway. Br J Cancer 88:1251–1255PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Zhong S et al (2008) Identification and validation of human DNA ligase inhibitors using computer-aided drug design. J Med Chem 51:4553–4562PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Srivastava M et al (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151:1474–1487PubMedCrossRefGoogle Scholar
  221. 221.
    Wang JC (1971) Interaction between DNA and an Escherichia coli protein omega. J Mol Biol 55:523–533PubMedCrossRefGoogle Scholar
  222. 222.
    Champoux JJ, Dulbecco R (1972) An activity from mammalian cells that untwists superhelical DNA – a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay). Proc Natl Acad Sci U S A 69:143–146PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol. doi: 10.1021/cb300648v
  224. 224.
    Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440PubMedCrossRefGoogle Scholar
  225. 225.
    Nitiss JL, Wang JC (1996) Mechanisms of cell killing by drugs that trap covalent complexes between DNA topoisomerases and DNA. Mol Pharmacol 50:1095–1102PubMedGoogle Scholar
  226. 226.
    Pommier Y et al (2006) Repair of topoisomerase I-mediated DNA damage. Prog Nucleic Acid Res Mol Biol 81:179–229PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Liu LF, Duann P, Lin CT, D’Arpa P, Wu J (1996) Mechanism of action of camptothecin. Ann N Y Acad Sci 803:44–49PubMedCrossRefGoogle Scholar
  228. 228.
    Pommier, Y. et al (2008) Repair of topoisomerase I-mediated DNA damage. October 6603, 1–37Google Scholar
  229. 229.
    Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433PubMedCrossRefGoogle Scholar
  230. 230.
    Pouliot JJ et al (1999) Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 286:552–555PubMedCrossRefGoogle Scholar
  231. 231.
    Ledesma FC, El Khamisy SF, Zuma MC, Osborn K, Caldecott KW (2009) A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 461:674–678CrossRefGoogle Scholar
  232. 232.
    Gao R et al (2014) Proteolytic degradation of topoisomerase II (Top2) enables the processing of Top2·DNA and Top2·RNA covalent complexes by tyrosyl-DNA-phosphodiesterase 2 (TDP2). J Biol Chem 289:17960–17969PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Alagoz M, Chiang SC, Sharma A, El-Khamisy SF (2013) ATM deficiency results in accumulation of DNA-topoisomerase I covalent intermediates in neural cells. PLoS One 8Google Scholar
  234. 234.
    Stingele J, Schwarz MS, Bloemeke N, Wolf PG, Jentsch S (2014) A DNA-dependent protease involved in DNA-protein crosslink repair. Cell 158:327–338PubMedCrossRefGoogle Scholar
  235. 235.
    Katyal S et al (2014) Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci 17:813–821PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Reczek CR, Szabolcs M, Stark JM, Ludwig T, Baer R (2013) The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression. J Cell Biol 201:693–707PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Nakamura K et al (2010) Collaborative action of Brca1 and CtIP in elimination of covalent modifications from double-strand breaks to facilitate subsequent break repair. PLoS Genet 6Google Scholar
  238. 238.
    Kim Y et al (2013) Regulation of multiple DNA repair pathways by the Fanconi anemia protein. Blood J 121:54–63CrossRefGoogle Scholar
  239. 239.
    Makharashvili N et al (2014) Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol Cell 54:1022–1033PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Alagoz M, Wells OS, El-Khamisy SF (2014) TDP1 deficiency sensitizes human cells to base damage via distinct topoisomerase I and PARP mechanisms with potential applications for cancer therapy. Nucleic Acids Res 42:3089–3103PubMedCrossRefGoogle Scholar
  241. 241.
    Das BB et al (2014) PARP1-TDP1 coupling for the repair of topoisomerase I-induced DNA damage. Nucleic Acids Res 42:4435–4449PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Berti M et al (2013) Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20:347–354PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Caldecott K, Tyrosyl W (2012) DNA phosphodiesterase 2, an enzyme fit for purpose. Nat Struct Mol Biol 19:1212–1213PubMedCrossRefGoogle Scholar
  244. 244.
    Quennet V, Beucher A, Barton O, Takeda S, Löbrich M (2011) CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Res 39:2144–2152PubMedCrossRefGoogle Scholar
  245. 245.
    Sartori AA et al (2007) Human CtIP promotes DNA end resection. Nature 450:509–514PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Heo J et al (2015) TDP1 promotes assembly of non-homologous end joining protein complexes on DNA. DNA Repair (Amst) 30(28–37)Google Scholar
  247. 247.
    Yang SW et al (1996) A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc Natl Acad Sci U S A 93:11534–11539PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Takashima H et al (2002) Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 32:267–272PubMedCrossRefGoogle Scholar
  249. 249.
    Hirano R et al (2007) Spinocerebellar ataxia with axonal neuropathy: consequence of a Tdp1 recessive neomorphic mutation? EMBO J 26:4732–4743PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    El-Khamisy SF, Hartsuiker E, Caldecott KW (2007) TDP1 facilitates repair of ionizing radiation-induced DNA single-strand breaks. DNA Repair (Amst) 6:1485–1495CrossRefGoogle Scholar
  251. 251.
    Walker C, Herranz-Martin S, Karyka E, Liao C, Lewis K, Elsayed W, Lukashchuk V, Chiang SC, Ray S, Mulcahy PJ, Jurga M, Tsagakis I, Iannitti T, Chandran J, Coldicott I, De Vos KJ, Hassan MK, Higginbottom A, Shaw PJ, Hautbergue GM, Azzouz M, El-Khamisy SF (2017) C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat Neurosci. doi:10.1038/nn.4604. [Epub ahead of print].
  252. 252.
    Davies DR, Interthal H, Champoux JJ, Hol WGJ (2002) The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. Structure 10:237–248Google Scholar
  253. 253.
    Inamdar KV et al (2002) Conversion of phosphoglycolate to phosphate termini on 3??? overhangs of DNA double strand breaks by the human tyrosyl-DNA phosphodiesterase hTdp1. J Biol Chem 277:27162–27168PubMedCrossRefGoogle Scholar
  254. 254.
    Nilsen L, Forstrøm RJ, Bjørs M, Alseth I (2012) AP endonuclease independent repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res 40:2000–2009PubMedCrossRefGoogle Scholar
  255. 255.
    Huang SYN et al (2013) TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs. Nucleic Acids Res 41:7793–7803PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Liu C et al (2007) Increased expression and activity of repair genes TDP1 and XPF in non-small cell lung cancer. Lung Cancer 55:303–311PubMedCrossRefGoogle Scholar
  257. 257.
    Gao R et al (2014) Epigenetic and genetic inactivation of tyrosyl-DNA-phosphodiesterase 1 (TDP1) in human lung cancer cells from the NCI-60 panel. DNA Repair (Amst) 13:1–9CrossRefGoogle Scholar
  258. 258.
    Meisenberg C et al (2015) Clinical and cellular roles for TDP1 and TOP1 in modulating colorectal cancer response to irinotecan. Mol Cancer Ther 14:575–585PubMedCrossRefGoogle Scholar
  259. 259.
    Liao Z, Thibaut L, Jobson A, Pommier Y (2006) Inhibition of human tyrosyl-DNA phosphodiesterase by aminoglycoside antibiotics and ribosome inhibitors. Mol Pharmacol 70:366–372PubMedGoogle Scholar
  260. 260.
    Antony S et al (2007) Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1. Nucleic Acids Res 35:4474–4484PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Marchand C et al (2009) Identification of phosphotyrosine mimetic inhibitors of human tyrosyl-DNA phosphodiesterase I by a novel AlphaScreen high-throughput assay. Mol Cancer Ther 8:240–248PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Zakharenko A et al (2015) Synthesis and biological evaluation of novel tyrosyl-DNA phosphodiesterase 1 inhibitors with a benzopentathiepine moiety. Bioorg Med Chem 23:2044–2052PubMedCrossRefGoogle Scholar
  263. 263.
    Pommier Y, Marchand C, Selvam P, Dexheimer T, Maddali K (2014) Fluoroquinolone derivatives or sulfonamide moiety-containing compounds as inhibitors of tyrosyl-dnaphosphodiesterase (TDP1)Google Scholar
  264. 264.
    Takagi M et al (2012) Tyrosyl-DNA phosphodiesterase 1 inhibitor from an anamorphic fungus. J Nat Prod 75:764–767PubMedCrossRefGoogle Scholar
  265. 265.
    Zakharenko A et al (2016) Tyrosyl-DNA phosphodiesterase 1 inhibitors: usnic acid enamines enhance the cytotoxic effect of camptothecin. J Nat Prod 79:2961–2967PubMedCrossRefGoogle Scholar
  266. 266.
    Ciccia A, McDonald N, West SC (2008) Structural and functional relationships of the XPF/MUS81 family of proteins. Annu Rev Biochem 77:259–287PubMedCrossRefGoogle Scholar
  267. 267.
    Pype S et al (2000) TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-??B activation. J Biol Chem 275:18586–18593PubMedCrossRefGoogle Scholar
  268. 268.
    Rodrigues-Lima F, Josephs M, Katan M, Cassinat B (2001) Sequence analysis identifies TTRAP, a protein that associates with CD40 and TNF receptor-associated factors, as a member of a superfamily of divalent cation-dependent phosphodiesterases. Biochem Biophys Res Commun 285:1274–1279PubMedCrossRefGoogle Scholar
  269. 269.
    Ju B (2006) A topoisomerase II beta-mediated dsDNA break required for regulated transcription. Science 312:1798–1802PubMedCrossRefGoogle Scholar
  270. 270.
    King IF et al (2013) Topoisomerases facilitate transcription of long genes linked to autism. Nature 501:58–62PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9:327–337PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Tiwari VK et al (2012) Target genes of Topoisomerase IIβ regulate neuronal survival and are defined by their chromatin state. Proc Natl Acad Sci 109:E934–E943PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Gómez-Herreros F et al (2014) TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nat Genet 46:516–521PubMedCrossRefGoogle Scholar
  274. 274.
    Do PM et al (2012) Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev 26:830–845PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Raoof A et al (2013) Toxoflavins and deazaflavins as the first reported selective small 2 molecule inhibitors of tyrosyl-DNA phosphodiesterase II 1. 54–70Google Scholar
  276. 276.
    Hornyak P et al (2016) Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2. Biochem J 473:1869–1879PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Kont YS et al (2016) Depletion of tyrosyl DNA phosphodiesterase 2 activity enhances etoposide-mediated double-strand break formation and cell killing. DNA Repair (Amst) 43:38–47CrossRefGoogle Scholar
  278. 278.
    Kankanala J et al (2016) Isoquinoline-1,3-diones as selective inhibitors of Tyrosyl DNA Phosphodiesterase II (TDP2). J Med Chem 59:2734–2746PubMedCrossRefGoogle Scholar
  279. 279.
    Elsayed W, El-Shafie L, Hassan MK, Farag MA, El-Khamisy SF (2016) Isoeugenol is a selective potentiator of camptothecin cytotoxicity in vertebrate cells lacking TDP1. Sci Rep 6:26626PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Palmer C, Coronel R, Liste I (2016) Treatment of Parkinson ’ s disease using human stem cells. 1:71–77Google Scholar
  281. 281.
    Cyranoski D (2016) CRISPR gene editing tested in a person. Nature 539:479PubMedCrossRefGoogle Scholar
  282. 282.
    Burger C, Nash K, Mandel RJ (2005) Recombinant adeno-associated viral vectors in the nervous system. Hum Gene Ther 16:781–791PubMedCrossRefGoogle Scholar
  283. 283.
    Taymans J-M et al (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18:195–206PubMedCrossRefGoogle Scholar
  284. 284.
    Ran FA et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–190PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Arwa A. Abugable
    • 1
    • 2
  • Dahlia A. Awwad
    • 3
  • Dalia Fleifel
    • 1
  • Mohamed M. Ali
    • 3
    • 4
  • Sherif El-Khamisy
    • 1
    • 5
  • Menattallah Elserafy
    • 1
    Email author
  1. 1.Center for GenomicsHelmy Institute for Medical Sciences, Zewail City of Science and TechnologyGizaEgypt
  2. 2.Center for Materials ScienceZewail City of Science and TechnologyGizaEgypt
  3. 3.University of Science and Technology, Zewail City of Science and TechnologyGizaEgypt
  4. 4.Department of Medical Microbiology and Immunology, Faculty of MedicineMansoura UniversityMansouraEgypt
  5. 5.Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth CourtUniversity of SheffieldSheffieldUK

Personalised recommendations