Advertisement

Mitochondrial Diseases as Model of Neurodegeneration

  • Laila A. SelimEmail author
  • Heba Hassaan
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1007)

Abstract

“Mitochondria” partially autonomous sophisticated cellular organelle involved in a wide range of crucial cellular functions, well known as the power house of the cell where ATP (adenosine triphosphate) production takes place, that is the cellular source of energy.

Mitochondria has its own genome, however proper functioning of the mitochondria is dependent upon the coordinated expression of both nuclear and mitochondrial encoded gene products. Peculiar maternal inheritance of mitochondrial DNA has led the scientists to think about mitochondrial donation as a solution to maternally inherited mitochondriopathy “Three parent baby”, raising many ethical and scientific issues, concerns about safety of the procedure, long term outcome and effect of genetic modification are still questionable.

Mitochondrial DNA has a higher mutation rate compared to nuclear DNA. Mitochondrial research has revealed a lot about methods of its DNA repair emphasizing the role of nuclear encoded products in this process.

Mitochondrial diseases are clinically and genetically diverse, fortunately next generation sequencing (NGS) technologies have made a breakthrough in mitochondrial disorders, the whole mitochondrial genome has been sequenced with more than 250 nuclear encoded genes associated with mitochondrial syndromes identified to date, It unraveled the role of mitochondrial disorders in neurodegenerative disorders. However many pathogenic candidate genes remain uncharacterized even with whole exome sequencing (WES).

In this chapter here we handle cases with various neurodegenerative diseases that have been genetically diagnosed thanks to NGS, revealing the role of mitochondrial dysfunction in neurodegeneration, offering a therapeutic target for these handicapping disorders.

Keywords

Mitochondria Mitohondrial genome (mtDNA) Mitochondrial dysfunction Gene Mutation Sequencing Neurodegeneration 

Notes

Acknowledgment

Centogene, Rostock, Germany for performing whole exome sequencing free of charge.

References

  1. 1.
    “Mitochondria”. Online Etymology DictionaryGoogle Scholar
  2. 2.
    Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology, Mol Asp Med, vol. 25 (pg. 365–351)Google Scholar
  3. 3.
    Koopman WJH, Willems PHGM, Smeitink JAM (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141CrossRefPubMedGoogle Scholar
  4. 4.
    Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727CrossRefPubMedGoogle Scholar
  5. 5.
    Kühlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13:89CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
  7. 7.
    Karbowski M (2010) Mitochondria on guard: role of mitochondrial fusion and fission in the regulation of apoptosis. Adv Exp Med Biol 687:131–142CrossRefPubMedGoogle Scholar
  8. 8.
    Desler C, Marcker ML, Singh KK, Rasmussen LJ (2011) The importance of mitochondrial DNA in aging and cancer. J Aging Res 2011: 407536-9Google Scholar
  9. 9.
    Chial H, Craig J (2008) mtDNA and mitochondrial diseases. Nat Educ 1(1):217Google Scholar
  10. 10.
    Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV (2016) Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 7(29):44879–44905Google Scholar
  11. 11.
    Mohamed Yusoff AA (2015) Role of mitochondrial DNA mutations in brain tumors: a mini-review. J Cancer Res Ther 11(3):535–544CrossRefPubMedGoogle Scholar
  12. 12.
    Sazanov LA (2015) Giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16(6):375–388Google Scholar
  13. 13.
    Koopman WJH, Distelmaier F, Smeitink JAM,Willems PHGM (2013) OXPHOS mutations and neurodegeneration. EMBO J 32(1):9–29Google Scholar
  14. 14.
  15. 15.
    Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132(Pt 4):833–842. doi: 10.1093/brain/awp058 PubMedGoogle Scholar
  16. 16.
    Alston CL, Compton AG, Formosa LE, Strecker V, Oláhová M, Haack TB, Smet J, Stouffs K, Diakumis P, Ciara E, Cassiman D, Romain N, Yarham JW, He L, De Paepe B, Vanlander AV6, Seneca S, Feichtinger RG, Płoski R, Rokicki D, Pronicka E, Haller RG, Van Hove JL, Bahlo M, Mayr JA, Van Coster R, Prokisch H, Wittig I, Ryan MT, Thorburn DR, Taylor RW (2016) Biallelic mutations in TMEM126B cause severe complex I deficiency with a variable clinical phenotype. Am J Hum Genet 99(1):217–227Google Scholar
  17. 17.
    Belevich I, Verkhovsky MI, Wikström M (2006) Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440:829–832CrossRefPubMedGoogle Scholar
  18. 18.
    Mick DU, Fox TD, Rehling P (2011) Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nat Rev Mol Cell Biol 12:14–20CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Balsa E, Marco R, Perales-Clemente E et al (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16:378–386CrossRefPubMedGoogle Scholar
  20. 20.
    Oláhová M, Haack TB, Alston CL, Houghton JA, He L, Morris AA, Brown GK, McFarland R, Chrzanowska-Lightowlers ZM, Lightowlers RN, Prokisch H, Taylor RW (2015) A truncating PET100 variant causing fatal infantile lactic acidosis and isolated cytochrome c oxidase deficiency. Eur J Hum Genet 23(7):935–939Google Scholar
  21. 21.
    Sharma LK, Lu J, Bai Y (2009) Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr Med Chem 16(10):1266–1277Google Scholar
  22. 22.
    Castellana S, Vicario S, Saccone C (2011) Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein–coding genes. Genome Biol Evol 3:1067–1079CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Chan DC, Schon EA (2012) Eliminating mitochondrial DNA from sperm. Dev Cell 22(3):469–470Google Scholar
  24. 24.
    Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kliegman R, Stanton B, Geme JS, Schor NF (2016) Nelson textbook of Pediatrics, 20th edn.1600 John F.Kennedy Blvd, Ste. 1800. ElsevierGoogle Scholar
  26. 26.
    Available at TutorVista.Com Google Scholar
  27. 27.
    Available at WWW.slide share.Net%2FAmeena1994%2F–mitochondrial-DNA-mutation
  28. 28.
    Nadia R Mitochondrial diseases: the cracked bottleneck of inheritance. J Young Investig. Retrieved from http://www.jyi.org/issue/mitochondrial-diseases-the-cracked-bottleneck-of-inheritance/
  29. 29.
    Amato P, Tachibana M, Sparman M, Mitalipov S (2014) Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases. Fertil Steril 101(1):31–35Google Scholar
  30. 30.
    Meyers DE, Basha HI, Mary Kay Koenig MK (2013) Mitochondrial cardiomyopathy pathophysiology, diagnosis, and management. Tex Heart Inst J 40(4): 385–394Google Scholar
  31. 31.
    DiMauro S (2011) A history of mitochondrial diseases. J Inherit Metab Dis 34:261–276CrossRefPubMedGoogle Scholar
  32. 32.
    Debray FG, Lambert M, Mitchell GA (2008) Disorders of mitochondrial function. Curr Opin Pediatr 20:471–482CrossRefPubMedGoogle Scholar
  33. 33.
    Pitceathly RDS, Smith C, Fratter C, Alston CL, He LP, Craig K, Blakely EL, Evans JC, Taylor J, Shabbir Z et al (2012) Adults with RRM2B-related mitochondrial disease have distinct clinical and molecular characteristics. Brain 135:3392–3403CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Suomalainen A, Isohanni P (2010) Mitochondrial DNA depletion syndromes—many genes, common mechanisms. Neuromuscul Disord 20:429–437CrossRefPubMedGoogle Scholar
  35. 35.
    Mayr JA, Haack TB, Freisinger P et al (2015) Spectrum of combined respiratory chain defects. J Inherit Metab Dis 38(4):629–640CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25:4663–4674CrossRefPubMedGoogle Scholar
  37. 37.
    Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515CrossRefPubMedGoogle Scholar
  38. 38.
    Oláhová M, Thompson K, Hardy SA, Barbosa IA, Besse A, Anagnostou ME, White K, Davey T, Simpson MA, Champion M, Enns G, Schelley S, Lightowlers RN, Chrzanowska-Lightowlers ZM1, McFarland R, Deshpande C, Bonnen PE, Taylor RW (2017) Pathogenic variants in HTRA2 cause an early-onset mitochondrial syndrome associated with 3-methylglutaconic aciduria. J Inherit Metab Dis 40(1):121–130Google Scholar
  39. 39.
    Forster K (2016) Three-person IVF can prevent babies from inheriting deadly genetic diseases. Indepenent. Retrieved from http://www.independent.co.uk/life-style/health-and-families/health-news/three-parent-baby-hfea-allowed-technique-birth-child-ruling-fertility-decision-a7476731.html
  40. 40.
    Palacios-González C (2016) Mitochondrial replacement techniques: egg donation, genealogy and eugenics. 1-Monash Bioeth Rev 34(1):37–51Google Scholar
  41. 41.
    Tibbitts T (2014) Third scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception, human fertilisation and embryology authorityGoogle Scholar
  42. 42.
    Reardon S. Genetic controversial of three parent baby revealed but the child’s parents have decided to forego long-term monitoring by researchers. Nat Int Weakly J Sci. Retrieved from https://www.nature.com/news/genetic-details-of-controversial-three-parent-baby-revealed-1.21761
  43. 43.
    Coghlan A (2016) ‘3-parent’ baby method already used for infertility. New scientist. Retrieved from https://www.newscientist.com/article/2108549-exclusive-3-parent-baby-method-already-used-for-infertility/
  44. 44.
    Scutti S (2017) Controversial IVF technique produces a baby girl -- and for some, that’s a problem. CNN. Retrieved from http://edition.cnn.com/2017/01/18/health/ivf-three-parent-baby-girl-ukraine-bn/
  45. 45.
    Chiang SC, Meagher M, Kassouf N, Hafezparast M, McKinnon PJ, Haywood R, El-Khamisy SF (2017) Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical-induced DNA damage. Sci Adv 3(4):e1602506. doi:  10.1126/sciadv.1602506. eCollection 2017
  46. 46.
    Bianchi NO, Bianchi MS, Richard SM (2001) Mitochondrial genome instability in human cancers. Mutat Res 488(1):9–23Google Scholar
  47. 47.
    Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13(10):659–671Google Scholar
  48. 48.
    Richard SM, Bailliet G, Páez GL, Bianchi MS, Peltomäki P, Bianchi NO (2000) Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res 60(15):4231–4237Google Scholar
  49. 49.
    WIand S, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12(4):537–577Google Scholar
  50. 50.
    Krssak M, Petersen KF, Dresner A et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in man: a 1H NMR spectroscopy study. Diabetologia 41:113–116CrossRefGoogle Scholar
  51. 51.
    Kirches E (2011) LHON: mitochondrial mutations and more. Curr Genomics 12:44–54Google Scholar
  52. 52.
    Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14:283–289CrossRefGoogle Scholar
  53. 53.
    Amati-Bonneau P, Milea D, Bonneau D, Chevrollier A, Ferré M, Guillet V, Gueguen N, Loiseau D, de Crescenzo MA, Verny C, Procaccio V, Lenaers G, Reynier P (2009) OPA1-associated disorders: phenotypes and pathophysiology. Int J Biochem Cell Biol 41(10):1855–1865. doi:  10.1016/j.biocel.2009.04.012. Epub Apr 21. Review
  54. 54.
    Cohn AC, Toomes C, Hewitt AW, Kearns LS, Inglehearn CF, Craig JE, Mackey DA (2007) The natural history of OPA1-related autosomal dominant optic atrophy. Br J Ophthalmol 92(10):1333–1336. doi:  10.1136/bjo.134726
  55. 55.
    Zanna C, Ghelli A, Porcelli AM, Karbowski M, Youle RJ, Schimpf S, Wissinger B, Pinti M, Cossarizza A, Vidoni S, Valentino ML, Rugolo M, Carelli V (2008) OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain 131(Pt 2):352–367. doi:  10.1093/brain/awm335
  56. 56.
    Available at emedicine. medscape.com/article1217760-overview
  57. 57.
    Federico A, et al (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol SciGoogle Scholar
  58. 58.
    Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 30(12):4232–4240Google Scholar
  59. 59.
    Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, et al. (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451Google Scholar
  60. 60.
    Pich S, Bach D, Briones P, Liesa M, Camps M, Testar X, et al. (2005) The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 14:1405–1415Google Scholar
  61. 61.
    Funalot B, Magdelaine C, Sturtz F, Ouvrier R, Vallat JM (2009) Ultrastructural lesions of axonal mitochondria in patients with childhood-onset Charcot-Marie-Tooth disease due to MFN2 mutations. Bull Acad Natl Med 193:151–60Google Scholar
  62. 62.
    Rouzier C, Bannwarth S, Chaussenot A, Chevrollier A, Verschueren A, Bonello-Palot N et al (2012) The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain 135:23–34CrossRefPubMedGoogle Scholar
  63. 63.
    Loiseau D, Chevrollier A, Verny C, Guillet V, Gueguen N, Pou de Crescenzo MA et al (2007) Mitochondrial coupling defect in Charcot-Marie-tooth type 2A disease. Ann Neurol 61:315–323CrossRefPubMedGoogle Scholar
  64. 64.
    Hirano M, DiMauro S (1996) Clinical features of mitochondrial myopathies and encephalomyopathies. In: Lane RJM (ed) Handbook of muscle disease. Marcel Dekker Inc, New York, pp 479–504Google Scholar
  65. 65.
    Wahbi K, Larue S, Jardel C, Meune C, Stojkovic T, Ziegler F, Lombes A, Eymard B, Duboc D, Laforet P (2010) Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology 74:674–677CrossRefPubMedGoogle Scholar
  66. 66.
    Greaves LC, Reeve AK, Taylor RW, Turnbull DM (2012) Mitochondrial DNA and disease. J Pathol 226:274–286CrossRefPubMedGoogle Scholar
  67. 67.
    Rommelaere G, Michel S, Malaisse J, Charlier S, Arnould T, Renard P (2012) Hypersensitivity of A8344G MERRF mutated cybrid cells to staurosporine-induced cell death is mediated by calcium-dependent activation of calpains. Int J Biochem Cell Biol 44:139–149CrossRefPubMedGoogle Scholar
  68. 68.
    Quinzii CM, Hirano M (2011) Primary and secondary CoQ(10) deficiencies in humans. Biofactors 37:361–365CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Montero R, Pineda M, Aracil A, Vilaseca MA, Briones P, Sánchez-Alcázar JA et al (2007) Clinical, biochemical and molecular aspects of cerebellar ataxia and coenzyme Q10 deficiency. Cerebellum 6:118–122CrossRefPubMedGoogle Scholar
  70. 70.
    Boitier E, Degoul F, Desguerre I, Charpentier C, François D et al (1998) A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency. J Neurol Sci 156:41–46CrossRefPubMedGoogle Scholar
  71. 71.
    Di Giovanni S, Mirabella M, Spinazzola A, Crociani P, Silvestri G et al (2001) Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology 57:515–518CrossRefPubMedGoogle Scholar
  72. 72.
    Dinwiddie DL, Smith LD, Miller NA, Atherton AM, Farrow EG et al (2013) Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics 102:148–156CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jakobs BS, van den Heuvel LP, Smeets RJ, de Vries MC, Hien S et al (2013) A novel mutation in COQ2 leading to fatal infantile multisystem disease. J Neurol Sci 326:24–28CrossRefPubMedGoogle Scholar
  74. 74.
    Scalais E, Chafai R, Van Coster R, Bindl L, Nuttin C, et al. (2013) Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur J Paediatr Neurol 17:625–630Google Scholar
  75. 75.
    Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V et al (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123:5179–5189CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    McCarthy HJ, Bierzynska A, Wherlock M, Ognjanovic M, Kerecuk L et al (2013) Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 8:637–648CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ et al (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Horvath R (2012) Update on clinical aspects and treatment of selected vitamin-responsive disorders II (riboflavin and CoQ10). J Inherit Metab Dis 35:679–687Google Scholar
  79. 79.
    Liu YT, Hersheson J, Plagnol V, Fawcett K, Duberley KE et al (2013) Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. J Neurol Neurosurg PsychiatryGoogle Scholar
  80. 80.
    Mignot C, Apartis E, Durr A, Marques Lourenço C et al (2013) Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression. Orphanet J Rare Dis 8:173CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Horvath R, Schneiderat P, Schoser BG, Gempel K, Neuen-Jacob E et al (2006) Coenzyme Q10 deficiency and isolated myopathy. Neurology 66:253–255CrossRefPubMedGoogle Scholar
  82. 82.
    Gempel K, Topaloglu H, Talim B, Schneiderat P, Schoser BG et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Copeland WC (2008) Inherited mitochondrial diseases of DNA replication. Annu Rev Med 59:131–146. pmid:17892433Google Scholar
  84. 84.
    Nguyen KV, Ostergaard E, Ravn SH, Balslev T, Danielsen ER, Vardag A et al (2005) POLG mutations in Alpers syndrome. Neurology 65:1493–1495CrossRefPubMedGoogle Scholar
  85. 85.
    Hudson G, Chinnery PF (2006) Mitochondrial DNA polymerase-gamma and human disease. Hum Mol Genet 2:244–252Google Scholar
  86. 86.
    Luoma PT, Eerola J, Ahola S, Hakonen AH, Hellström O, Kivistö KT et al (2007) Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology 69:1152–1159CrossRefPubMedGoogle Scholar
  87. 87.
    Eerola J, Luoma PT, Peuralinna T, Scholz S, Paisan-Ruiz C, Suomalainen A et al (2010) POLG1 polyglutamine tract variants associated with Parkinson’s disease. Neurosci Lett 477:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Anvret A, Westerlund M, Sydow O, Willows T, Lind C, Galter D et al (2010) Variations of the CAG trinucleotide repeat in DNA polymerase γ (POLG1) is associated with Parkinson’s disease in Sweden. Neurosci Lett 485:117–120CrossRefPubMedGoogle Scholar
  89. 89.
    Mancuso M, Filosto M, Orsucci D, Siciliano G (2008) Mitochondrial DNA sequence variation and neurodegeneration. Hum Genomics 3:71–78CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Seidowsky A, Hoffmann M, Glowacki F, Dhaenens CM, Devaux JP, Lessore de Sainte Foy C, et al (2012) Renal involvement in MELAS syndrome - a series of 5 cases and review of the literature. Clin NephrolGoogle Scholar
  91. 91.
    Meseguer S, Martínez-Zamora A, García-Arumí E, Andreu AL, Armengod ME (2014) The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol GenetGoogle Scholar
  92. 92.
    Testai FD, Gorelick PB (2010) Inherited metabolic disorders and stroke part 1: Fabry disease and mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Arch Neurol 67(1):19–24CrossRefPubMedGoogle Scholar
  93. 93.
    Liu K, Zhao H, Ji K, Yan C (2014) MERRF/MELAS overlap syndrome due to the m.3291T>C mutation. Metab Brain Dis 29(1):139–144CrossRefPubMedGoogle Scholar
  94. 94.
    Sasarman F, Antonicka H, Shoubridge EA (2008) The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet 17(23):3697–3707CrossRefPubMedGoogle Scholar
  95. 95.
    Selim L, Mehany D (2013) Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes in a Japanese child: clinical, radiological and molecular genetic analysis. The Egy J Med H Gen 14:317–322CrossRefGoogle Scholar
  96. 96.
    Hirano M, MARTI R, Spinazzola A, Nishinol, Nishigaki Y (2004) Thymidine phosphorylase deficiency causes MNGIE: an autosomal recessive mitochondrial disorder. Nucleosides Nucleotides Nucleic Acids 23:1217–1225Google Scholar
  97. 97.
    Garone C, Tadesse S, Hirano M (2011) Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain 134:3326–3332CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Said G, Lacroix C, Plante-Bordeneuveu, Messing B, Slama A, Crenn P, Nivelon Chevallier A, Bedenne L, Soichot P, Manceau E, Rigaud D, Guiochon-Mantel A, Matuchansky C (2005) Clinicopathological aspects of the neuropathy of neurogastrointestinal encephalomyopathy (MNGIE) in four patients including two with a Charcot-Marie-Tooth presentation. J Neurol 252:655–662CrossRefPubMedGoogle Scholar
  99. 99.
    Van Goethem G, Schwartz M, LÖfrena, Dermaut B, Van Van Broeckhoven C, Vissing J (2003) Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur J Hum Genet, 11:547–549Google Scholar
  100. 100.
    Slama A, Lacroix C, Plante-Bordeneuve V, Lombès A, Conti M, Reimund JM, Auxenfants E, Crenn P, Laforêt P, Joannard A, Seguy D, Pillant H, Joly P, Haut S, Messing B, Said G, Legrand A, Guiochon-Mantel A (2005) Thymidine phosphorylase gene mutations in patients with mitochondrial neurogastrointestinal encephalomyopathy syndrome. Mol Genet Meta 84:326–331CrossRefGoogle Scholar
  101. 101.
    Selim L, Van Coster R, Mehaney D, Hassan F, Vanlander A, Smet J, De Latter E, VAndemeulebroecke K, Mohamed Abdou D, Nakhla G, Mostafa M, Habets D, Bakker J, Abdel Elbary A (2016) Mitochondrial neurogastrointestinal encephalopathy; clinical, biochemical and molecular study in three Egyptian patients. Genetic Counselling 2:193–205Google Scholar
  102. 102.
    Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609CrossRefPubMedGoogle Scholar
  104. 104.
    Swerdlow RH (2009) The neurodegenerative mitochondriopathies. J Alzheimers Dis 17:737–751CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520CrossRefPubMedGoogle Scholar
  106. 106.
    Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochimica et Biophysica Acta (BBA) – Mol Basis Dis 1802(1):29–44Google Scholar
  107. 107.
    Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of α-Synuclein impair complex I in human Dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186:158–172Google Scholar
  109. 109.
    Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA et al (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50CrossRefPubMedGoogle Scholar
  110. 110.
    Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN (2005) Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J Mol Biol 351:1081–1100CrossRefPubMedGoogle Scholar
  111. 111.
    Battisti C, Formichi P, Radi E, Federico A (2008) Oxidative-stress-induced apoptosis in PBLs of two patients with Parkinson disease secondary to alpha-synuclein mutation. J Neurol Sci 267:120–124CrossRefPubMedGoogle Scholar
  112. 112.
    Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219Google Scholar
  113. 113.
    Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol Cell Neurosci 55:101–114CrossRefPubMedGoogle Scholar
  114. 114.
    Blakely E, He L, Gardner JL, Hudson G, Walter J, Hughes I et al (2008) Novel mutations in the TK2 gene associated with fatal mitochondrial DNA depletion myopathy. Neuromuscul Disord 18(7):557–560CrossRefPubMedGoogle Scholar
  115. 115.
    Moraes CT, Shanske S, Tritschler HJ, Aprille JR, Andreetta F, Bonilla E et al (1991) MtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am J Hum Genet 48(3):492–501PubMedPubMedCentralGoogle Scholar
  116. 116.
    Mancuso M, Salviati L, Sacconi S, Otaegui D, Camano P, Marana A et al (2002) Mitochondrial DNA depletion: mutations in thymidine kinase gene with myopathy and SMA. Neurology 59:1197–1202CrossRefPubMedGoogle Scholar
  117. 117.
    Johansson K, Ramaswamy S, Ljungcrantz C, Knecht W, Piskur J, Munch-Petersen B et al (2001) Structural basis for substrate specificities of cellular deoxyribonucleoside kinases. Nat Struct Biol 8:616–620CrossRefPubMedGoogle Scholar
  118. 118.
    Selim L, Mehaney D, Hassan F, Sabry R, Zeyada R, Hassan S, Gamal Eldin I, Bertini E (2012) Mitochondrial DNA depletion syndrome presenting with ataxia and external ophthalmoplegia: case report Egy J Med H n13:351–357Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  1. 1.Kasr Al Ainy School of MedicineCairo University Children HospitalCairoEgypt

Personalised recommendations