Can Astrocytes Be a Target for Precision Medicine?

  • Chloe F. Allen
  • Pamela J. Shaw
  • Laura FerraiuoloEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1007)


Astrocytes are the most abundant non-neural cell type residing within the central nervous system (CNS) displaying tremendous heterogeneity depending on their location. Once believed to be ‘passive support cells for electrically active neurons’, astrocytes are now recognised to play an active role in brain homeostasis by forming connections with the surrounding neurons, microglia and endothelial cells. Most importantly, they provide an optimum microenvironment for functional neurons through regulation of the blood brain barrier, energy supply and removal of debris and toxic waste.

Their dysfunction has been identified as a potential contributing factor for several neurodegenerative disorders, from Alzheimer’s Disease to Amyotrophic Lateral Sclerosis.

In this chapter, we will explore the implications of astrocyte dysfunction in neurodegenerative diseases and how these cells can be used as therapeutic targets in precision medicine.


Astrocytes Neurodegeneration Inflammation Non-cell autonomous mechanism Biomarkers Transcriptomic analysis High-throughput screening Precision medicine 


  1. 1.
    Lashley T, Rohrer JD, Mead S, Revesz T (2015) Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol 41:858–881PubMedCrossRefGoogle Scholar
  2. 2.
    Li W et al (2016) Neuropharmacologic approaches to restore the Brain’s microenvironment. J NeuroImmune Pharmacol 11:484–494PubMedCrossRefGoogle Scholar
  3. 3.
    Renton AE et al (2012) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268CrossRefGoogle Scholar
  4. 4.
    Chandrasekaran A, Avci HX, Leist M, Kobolák J, Dinnyés A (2016) Astrocyte differentiation of human pluripotent stem cells: new tools for neurological disorder research. Front Cell Neurosci 10:215PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Parpura V, Verkhratsky A (2012) Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling. Croat Med J 53:518–528PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166PubMedCrossRefGoogle Scholar
  7. 7.
    Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pr Neurol 2:679–689CrossRefGoogle Scholar
  8. 8.
    Rothstein JD, Martin LJ, Kungl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468PubMedCrossRefGoogle Scholar
  9. 9.
    Bruijn LI et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338PubMedCrossRefGoogle Scholar
  10. 10.
    Rothstein JD et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686PubMedCrossRefGoogle Scholar
  11. 11.
    Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367PubMedPubMedCentralGoogle Scholar
  12. 12.
    Jurič DM, Kržan M, Lipnik-Stangelj M (2016) Histamine and astrocyte function. Pharmacol Res 111:774–783CrossRefGoogle Scholar
  13. 13.
    Clement AM et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science (80- ) 302:113–117CrossRefGoogle Scholar
  14. 14.
    Haidet-Phillips AM et al (2012) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29:824–828CrossRefGoogle Scholar
  15. 15.
    Meyer K et al (2014) Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci U S A 111:829–832PubMedCrossRefGoogle Scholar
  16. 16.
    Ferraiuolo L et al (2011) Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 134:2627–2641PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Heales S, Lam A, Duncan A, Land J (2004) Neurodegeneration or neuroprotection: the pivotal role of astrocytes. Neurochem Res 29:513–519PubMedCrossRefGoogle Scholar
  18. 18.
    Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53PubMedCrossRefGoogle Scholar
  19. 19.
    Erdő F, Denes L, de Lange E (2017) Age-associated physiological and pathological changes at the blood–brain barrier: a review. J Cereb Blood Flow Metab 37:4–24PubMedCrossRefGoogle Scholar
  20. 20.
    Wang H, Eckel RH (2014) What are lipoproteins doing in the brain? Trends Endocrinol Metab 25:8–14PubMedCrossRefGoogle Scholar
  21. 21.
    Halliday MR et al (2016) Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab 36:216–227PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gimsa U, Mitchison NA, Brunner-Weinzierl MC (2013) Immune privilege as an intrinsic CNS property: astrocytes protect the CNS against T-cell-mediated neuroinflammation. Mediat Inflamm 2013Google Scholar
  23. 23.
    Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science (80- ) 323:1211–1215CrossRefGoogle Scholar
  24. 24.
    Philips T, Rothstein J (2014) Glial cells in amyotrophic lateral sclerosis. Exp Neurol 262PB:111–120PubMedCentralCrossRefGoogle Scholar
  25. 25.
    Frakes AE et al (2014) Microglia induce motor neuron death via the classical NF-kB pathway in amyotrophic lateral sclerosis. Neuron 81:1009–1023PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gotovac K, Hajnšek S, Pašić MB, Pivac N, Borovečki F (2014) Personalized medicine in neurodegenerative diseases: how far away? Mol Diagn Ther 18:17–24PubMedCrossRefGoogle Scholar
  27. 27.
    Geser F, Lee VMY, Trojanowski JQ (2010) Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 30:103–112PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tan RH et al (2015) TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes. Brain 138:3110–3122PubMedCrossRefGoogle Scholar
  29. 29.
    Cruz NF, Ball KK, Dienel GA (2010) Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer’s disease transgenic mice. ASN Neuro 2:e00041PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80:1778–1783PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wyss-Coray T et al (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9:453–457PubMedCrossRefGoogle Scholar
  32. 32.
    Bolognesi ML, Gandini A, Prati F, Uliassi E (2016) From companion diagnostics to theranostics: a new avenue for Alzheimer’s disease? J Med Chem. acs.jmedchem.6b00151. doi: 10.1021/acs.jmedchem.6b00151
  33. 33.
    Yang L, Rieves D, Ganley C (2012) Brain amyloid imaging – FDA approval of florbetapir F18 injection. N Engl J Med 367:885–887PubMedCrossRefGoogle Scholar
  34. 34.
    Mason NS, Mathis CA, Klunkc WE (2013) Positron emission tomography radioligands for in vivo imaging of Aβ plaques. J Label Compd Radiopharm 56:89–95CrossRefGoogle Scholar
  35. 35.
    Abou-Gharbia M, Childers WE (2014) Discovery of innovative therapeutics: today’s realities and tomorrow’s vision. 2. Pharma’s challenges and their commitment to innovation. J Med Chem 57:5525–5553PubMedCrossRefGoogle Scholar
  36. 36.
    Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC (2015) Tau imaging: early progress and future directions. Lancet Neurol 14:114–124PubMedCrossRefGoogle Scholar
  37. 37.
    Maruyama M et al (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79:1094–1108PubMedCrossRefGoogle Scholar
  38. 38.
    Xia CF et al (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9:666–676PubMedCrossRefGoogle Scholar
  39. 39.
    Villemagne VL et al (2014) In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41:816–826PubMedCrossRefGoogle Scholar
  40. 40.
    Harada R et al (2016) 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer’s disease. J Nucl Med 57:208–214PubMedCrossRefGoogle Scholar
  41. 41.
    Khoo SK et al (2012) Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2:321–331PubMedGoogle Scholar
  42. 42.
    Miñones-Moyano E et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078PubMedCrossRefGoogle Scholar
  43. 43.
    Siege SR, MacKenzie J, Chaplin G, Jablonski NG, Griffiths L (2012) Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 39:6219–6225CrossRefGoogle Scholar
  44. 44.
    Dong L et al (2014) miRNA microarray reveals specific expression in the peripheral blood of glioblastoma patients. Int J Oncol 45:746–756PubMedCrossRefGoogle Scholar
  45. 45.
    Denk J et al (2015) MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PLoS One 10:1–18CrossRefGoogle Scholar
  46. 46.
    Zou Z-Y, Liu C-Y, Che C-H, Huang H-P (2016) Toward precision medicine in amyotrophic lateral sclerosis. Ann Transl Med 4:27PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Butovsky O et al (2016) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77:75–99CrossRefGoogle Scholar
  48. 48.
    Zhao Y et al (2014) Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol Neurobiol 50:97–106PubMedCrossRefGoogle Scholar
  49. 49.
    Parisi C et al (2016) MicroRNA-125b regulates microglia activation and motor neuron death in ALS. Cell Death Differ 23:531–541PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lepore AC et al (2008) Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 11:1294–1301PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Harrison JF et al (2007) Altering DNA base excision repair: use of nuclear and mitochondrial-targeted N-methylpurine DNA glycosylase to sensitize astroglia to chemotherapeutic agents. Glia 55:1416–1425PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Caiazzo M et al (2015) Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports 4:25–36PubMedCrossRefGoogle Scholar
  53. 53.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  54. 54.
    Chestkov IV, Vasilieva EA, Illarioshkin SN, Lagarkova MA, Kiselev SL (2014) Patient-specific induced pluripotent stem cells for SOD1-associated amyotrophic lateral sclerosis pathogenesis studies. Acta Nat 6:54–60Google Scholar
  55. 55.
    Roybon L et al (2013) Human stem cell-derived spinal cord astrocytes with defined mature or reactive phenotypes. Cell Rep 4:1035–1048PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Serio A et al (2013) Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci U S A 110:4697–4702PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bucchia M et al (2015) Therapeutic development in amyotrophic lateral sclerosis. Clin Ther 37:668–680PubMedCrossRefGoogle Scholar
  58. 58.
    Johnson MA, Weick JP, Pearce RA, Zhang S-C (2007) Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 27:3069–3077PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Krencika R, Zhang S-C (2011) Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc 6:1710–1717CrossRefGoogle Scholar
  60. 60.
    Krencik R, Weick JP, Liu Y, Zhang Z, Zhang S-C (2011) Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol 29:528–534PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Emdad L, D’Souza SL, Kothari HP, Qadeer ZA, Germano IM (2012) Efficient differentiation of human embryonic and induced pluripotent stem cells into functional astrocytes. Stem Cells Dev 21:404–410PubMedCrossRefGoogle Scholar
  62. 62.
    Liu ML et al (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts to cholinergic neurons. Nat Commun 4:2183PubMedPubMedCentralGoogle Scholar
  63. 63.
    Pfisterer U et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Son E, Ichida J, Wainger B, Toma J (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205–218PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kim J et al (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. PNAS 108:7838–7843PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Koistinaho M et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719–726PubMedCrossRefGoogle Scholar
  67. 67.
    Proschel C, Stripay JL, Shih CH, Munger JC, Noble MD (2014) Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons. EMBO Mol Med 6:504–518PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Davies SJA et al (2011) Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS One 6:e17328PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Das MM et al (2016) Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats. Exp Neurol 280:41–49PubMedCrossRefGoogle Scholar
  70. 70.
    Kondo T et al (2014) Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice. Stem Cell Reports 3:242–249PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Nizzardo M et al (2016) iPSC-derived LewisX+CXCR4+β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models. Hum Mol Genet 25:3152–3163PubMedCrossRefGoogle Scholar
  72. 72.
    Srinivasan K et al (2016) Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional response. Nat Commun 7:11295PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Baker DJ et al (2015) Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 (G93A) mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 9:410PubMedPubMedCentralGoogle Scholar
  74. 74.
    Guillot F et al (2015) Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation. J Neuroinflammation 12:1–14CrossRefGoogle Scholar
  75. 75.
    Waller R et al (2016) Gene expression profiling of the astrocyte transcriptome in multiple sclerosis normal appearing white matter reveals a neuroprotective role. J Neuroimmunol 299:139–146PubMedCrossRefGoogle Scholar
  76. 76.
    Simpson JE et al (2011) Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype. Neurobiol Aging 32:1795–1807PubMedCrossRefGoogle Scholar
  77. 77.
    Aronica E et al (2015) Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex. Neurobiol Dis 74:359–376PubMedCrossRefGoogle Scholar
  78. 78.
    Biswas S, Holyoake D, Maughan TS (2016) Molecular taxonomy and tumourigenesis of colorectal cancer. Clin Oncol 28:73–82CrossRefGoogle Scholar
  79. 79.
    Wang M et al (2016) Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease. Genome Med 8:104PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Frangogiannis N, Biomarkers G (2012) Hopes and challenges in the path from discovery to clinical practice. Transl Res 159:197–204PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Dosay-Akbulut M (2016) A review on determination and future of the predictive and personalized medicine. Int J Biol 8:32–41CrossRefGoogle Scholar
  82. 82.
    Collins CD et al (2006) The application of genomic and proteomic technologies in predictive, preventive and personalized medicine. Vasc Pharmacol 45:258–267CrossRefGoogle Scholar
  83. 83.
    Sajja VSSS, Hlavac N, VandeVord PJ (2016) Role of glia in memory deficits following traumatic brain injury: biomarkers of glia dysfunction. Front Integr Neurosci 10:1–9CrossRefGoogle Scholar
  84. 84.
    Papa L et al (2014) GFAP out-performs S100β in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. J Neurotrauma 31:1815–1822PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bouvier D et al (2012) Serum S100B determination in the management of pediatric mild traumatic brain injury. Clin Chem 58:1116–1122PubMedCrossRefGoogle Scholar
  86. 86.
    Shepheard SR, Chataway T, Schultz DW, Rush RA, Rogers ML (2014) The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis. PLoS One 9:1–9CrossRefGoogle Scholar
  87. 87.
    Ching ASC et al (2012) Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insights Imaging 3:111–119PubMedCrossRefGoogle Scholar
  88. 88.
    Liu GJ et al (2014) The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 24:631–653PubMedCrossRefGoogle Scholar
  89. 89.
    Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153:240–251PubMedCrossRefGoogle Scholar
  90. 90.
    Chiurchiù V et al (2014) Detailed characterization of the endocannabinoid system in human macrophages and foam cells, and anti-inflammatory role of type-2 cannabinoid receptor. Atherosclerosis 233:55–63PubMedCrossRefGoogle Scholar
  91. 91.
    Turkman N et al (2011) Fluorinated cannabinoid CB2 receptor ligands: synthesis and in vitro binding characteristics of 2-oxoquinoline derivatives. Bioorg Med Chem 19:5698–5707PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Vandeputte C et al (2011) A PET brain reporter gene system based on type 2 cannabinoid receptors. J Nucl Med 52:1102–1109PubMedCrossRefGoogle Scholar
  93. 93.
    Veitinger M, Varga B, Guterres SB, Zellner M (2014) Platelets, a reliable source for peripheral Alzheimer’s disease biomarkers? Acta Neuropathol Commun 2:65PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Poutiainen P, Jaronen M, Quintana FJ, Brownell A-L (2016) Precision medicine in multiple sclerosis: future of PET imaging of inflammation and reactive astrocytes. Front Mol Neurosci 9:1–23CrossRefGoogle Scholar
  95. 95.
    Gulyas B et al (2011) Activated MAO-B in the brain of alzheimer patients, demonstrated by [11C]-l-deprenyl using whole hemisphere autoradiography. Neurochem Int 58:60–68PubMedCrossRefGoogle Scholar
  96. 96.
    Droździk M, Białecka M, Kurzawski M (2013) Pharmacogenetics of Parkinson’s disease - through mechanisms of drug actions. Curr Genomics 14:568–577PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Cacabelos R (2007) Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat 3:303–333PubMedPubMedCentralGoogle Scholar
  98. 98.
    Rascol O et al (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342:1484–1491PubMedCrossRefGoogle Scholar
  99. 99.
    Foltynie T et al (2009) BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 80:141–144PubMedCrossRefGoogle Scholar
  100. 100.
    Lin J-J, Yueh K-C, Lin S-Z, Harn H-J, Liu J-T (2007) Genetic polymorphism of the angiotensin converting enzyme and L-dopa-induced adverse effects in Parkinson’s disease. J Neurol Sci 252:130–134PubMedCrossRefGoogle Scholar
  101. 101.
    Molchadski I et al (2011) The role of apolipoprotein E polymorphisms in levodopa-induced dyskinesia. Acta Neurol Scand 123:117–121PubMedCrossRefGoogle Scholar
  102. 102.
    Strong JA et al (2006) Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord 21:654–659PubMedCrossRefGoogle Scholar
  103. 103.
    Clark L et al (2007) Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology 69:1270–1277PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lesage S et al (2011) Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Parkinson’s disease. Hum Mol Genet 20:202–210PubMedCrossRefGoogle Scholar
  105. 105.
    Limpert AS, Mattmann ME, Cosford NDP (2013) Recent progress in the discovery of small molecules for the treatment of amyotrophic lateral sclerosis (ALS). Beilstein J Org Chem 9:717–732PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Isobe T, Tooi N, Nakatsuji N, Aiba K (2015) Amyotrophic lateral sclerosis models derived from human embryonic stem cells with different superoxide dismutase 1 mutations exhibit differential drug responses. Stem Cell Res 15:459–468PubMedCrossRefGoogle Scholar
  107. 107.
    Shichinohe H et al (2004) Neuroprotective effects of the free radical scavenger Edaravone (MCI-186) in mice permanent focal brain ischemia. Brain Res 1029:200–206PubMedCrossRefGoogle Scholar
  108. 108.
    Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58:831–838PubMedGoogle Scholar
  109. 109.
    Yeh C, Vadhwana B, Verkhratsky A, Rodríguez JJ (2011) Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro 3:271–279PubMedCrossRefGoogle Scholar
  110. 110.
    Diaz-Amarilla P et al (2011) From the cover: phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc Natl Acad Sci 108:18126–18131PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Schitine C, Nogaroli L, Costa MR, Hedin-Pereira C (2015) Astrocyte heterogeneity in the brain: from development to disease. Front Cell Neurosci 9:76PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    McGivern JV, Ebert AD (2014) Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments. Adv Drug Deliv Rev 69–70:170–178PubMedCrossRefGoogle Scholar
  113. 113.
    del Barrio L et al (2011) Neurotoxicity induced by okadaic acid in the human neuroblastoma SH-SY5Y line can be differentially prevented by a7 and b2* nicotinic stimulation. Toxicol Sci 123:193–205PubMedCrossRefGoogle Scholar
  114. 114.
    Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17:170–182PubMedCrossRefGoogle Scholar
  115. 115.
    Glajch KE et al (2016) MicroNeurotrophins improve survival in motor neuron-astrocyte co-cultures but do not improve disease phenotypes in a mutant SOD1 mouse model of amyotrophic lateral sclerosis. PLoS One 11:1–24CrossRefGoogle Scholar
  116. 116.
    Terrasso AP et al (2016) Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds. J Pharmacol Toxicol Methods 83:72–79PubMedCrossRefGoogle Scholar
  117. 117.
    Al-Ali H et al (2015) Rational polypharmacology: systematically identifying and engaging multiple drug targets to promote axon growth. ACS Chem Biol 10:1939–1951PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Blackmore MG et al (2010) High content screening of cortical neurons identifies novel regulators of axon growth. Mol Cell Neurosci 44:43–54PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lorenz C et al (2017) Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell:1–16. doi: 10.1016/j.stem.2016.12.013
  120. 120.
    Egawa N et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104–145ra104PubMedCrossRefGoogle Scholar
  121. 121.
    Anderl JL, Redpath S, Ball AJ (2009) A neuronal and astrocyte co-culture assay for high content analysis of neurotoxicity. J Vis Exp 27:1–6Google Scholar
  122. 122.
    Rinaldi F, Motti D, Ferraiuolo L, Kaspar BK (2016) High content analysis in amyotrophic lateral sclerosis. Mol Cell Neurosci. doi: 10.1016/j.mcn.2016.12.001
  123. 123.
    Efremova L et al (2015) Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism. Br J Pharmacol 172:4119–4132PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ferraiuolo L et al (2016) Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc Natl Acad Sci U S A 113:E6496–E6505PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Frakes AE, Braun L, Ferraiuolo L, Guttridge DC, Kaspar BK (2017) Additive amelioration of ALS by co-targeting independent pathogenic mechanisms. Ann Clin Transl Neurol 4:76–86PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Chloe F. Allen
    • 1
  • Pamela J. Shaw
    • 1
  • Laura Ferraiuolo
    • 1
    Email author
  1. 1.Department of Neuroscience, Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK

Personalised recommendations