Gene Therapy in the Nervous System: Failures and Successes

  • Jayanth S. Chandran
  • Joseph M. Scarrott
  • Pamela J. Shaw
  • Mimoun AzzouzEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1007)


Genetic disorders, caused by deleterious changes in the DNA sequence away from the normal genomic sequence, affect millions of people worldwide. Gene therapy as a treatment option for patients is an attractive proposition due to its conceptual simplicity. In principle, gene therapy involves correcting the genetic disorder by either restoring a normal functioning copy of a gene or reducing the toxicity arising from a mutated gene. In this way specific genetic function can be restored without altering the expression of other genes and the proteins they encode. The reality however is much more complex, and as a result the vector systems used to deliver gene therapies have by necessity continued to evolve and improve over time with respect to safety profile, efficiency, and long-term expression. In this chapter we examine the current approaches to gene therapy, assess the different gene delivery systems utilized, and highlight the failures and successes of relevant clinical trials. We do not intend for this chapter to be a comprehensive and exhaustive assessment of all clinical trials that have been conducted in the CNS, but instead will focus on specific diseases that have seen successes and failures with different gene therapy vehicles to gauge how preclinical models have informed the design of clinical trials.


Adeno-associated virus Gene therapy CNS Neurodegenerative disease Antisense oligonucleotides 



MA and JSC are supported by an ERC Advanced Investigator Award. JMS is supported by University of Sheffield studentship. PJS is supported as an NIHR Senior Investigator.


  1. 1.
    Rosenberg SA et al (1990) Gene transfer into humans – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323:570–578. doi: 10.1056/NEJM199008303230904 PubMedCrossRefGoogle Scholar
  2. 2.
    Blaese RM et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270:475–480PubMedCrossRefGoogle Scholar
  3. 3.
    Hedman M, Hartikainen J, Yla-Herttuala S (2011) Progress and prospects: hurdles to cardiovascular gene therapy clinical trials. Gene Ther 18:743–749. doi: 10.1038/gt.2011.43 PubMedCrossRefGoogle Scholar
  4. 4.
    Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW (2016) Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 3:16034. doi: 10.1038/mtm.2016.34 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139. doi: 10.1038/nrd725 PubMedCrossRefGoogle Scholar
  7. 7.
    McCarty DM, Young SM Jr, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845. doi: 10.1146/annurev.genet.37.110801.143717 PubMedCrossRefGoogle Scholar
  8. 8.
    Barquinero J, Eixarch H, Perez-Melgosa M (2004) Retroviral vectors: new applications for an old tool. Gene Ther 11(Suppl 1):S3–S9. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  9. 9.
    Volpers C, Kochanek S (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med 6(Suppl 1):S164–S171. doi: 10.1002/jgm.496 PubMedCrossRefGoogle Scholar
  10. 10.
    Howarth JL, Lee YB, Uney JB (2010) Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 26:1–20. doi: 10.1007/s10565-009-9139-5 PubMedCrossRefGoogle Scholar
  11. 11.
    Choudhury SR et al (2016) Viral vectors for therapy of neurologic diseases. Neuropharmacology. doi: 10.1016/j.neuropharm.2016.02.013
  12. 12.
    Negrete A, Kotin RM (2007) Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales. J Virol Methods 145:155–161. doi: 10.1016/j.jviromet.2007.05.020 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hacein-Bey-Abina S et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419. doi: 10.1126/science.1088547 PubMedCrossRefGoogle Scholar
  14. 14.
    Hacein-Bey-Abina S et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142. doi: 10.1172/JCI35700 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hacein-Bey-Abina S et al (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363:355–364. doi: 10.1056/NEJMoa1000164 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Braun CJ et al (2014) Gene therapy for Wiskott-Aldrich syndrome – long-term efficacy and genotoxicity. Sci Transl Med 6:227ra233. doi: 10.1126/scitranslmed.3007280 CrossRefGoogle Scholar
  17. 17.
    Maetzig T, Galla M, Baum C, Schambach A (2011) Gammaretroviral vectors: biology, technology and application. Virus 3:677–713. doi: 10.3390/v3060677 CrossRefGoogle Scholar
  18. 18.
    Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW (2004) Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 122:131–139. doi: 10.1016/j.jviromet.2004.08.017 PubMedCrossRefGoogle Scholar
  19. 19.
    Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4:353–364. doi: 10.1038/nrn1104 PubMedCrossRefGoogle Scholar
  20. 20.
    Sinn PL, Sauter SL, McCray PB Jr (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors – design, biosafety, and production. Gene Ther 12:1089–1098. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  21. 21.
    Kiang A et al (2006) Multiple innate inflammatory responses induced after systemic adenovirus vector delivery depend on a functional complement system. Mol Ther 14:588–598. doi: 10.1016/j.ymthe.2006.03.024 PubMedCrossRefGoogle Scholar
  22. 22.
    Hartman ZC et al (2007) Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo. J Virol 81:1796–1812. doi: 10.1128/JVI.01936-06 PubMedCrossRefGoogle Scholar
  23. 23.
    Wilson JM (2009) Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab 96:151–157. doi: 10.1016/j.ymgme.2008.12.016 PubMedCrossRefGoogle Scholar
  24. 24.
    Capasso C, Garofalo M, Hirvinen M, Cerullo V (2014) The evolution of adenoviral vectors through genetic and chemical surface modifications. Virus 6:832–855. doi: 10.3390/v6020832 CrossRefGoogle Scholar
  25. 25.
    Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20:699–708. doi: 10.1038/mt.2011.287 PubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zhang H et al (2011) Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 19:1440–1448. doi: 10.1038/mt.2011.98 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    McCarty D, Self-complementary M (2008) AAV vectors; advances and applications. Mol Ther 16:1648–1656. doi: 10.1038/mt.2008.171 PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang F (2015) CRISPR-Cas9: prospects and challenges. Hum Gene Ther 26:409–410. doi: 10.1089/hum.2015.29002.fzh PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358. doi: 10.1126/science.1192272 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Younger ST, Corey DR (2009) The puzzle of RNAs that target gene promoters. Chembiochem 10:1135–1139. doi: 10.1002/cbic.200900015 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Janowski BA et al (2007) Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3:166–173. doi: 10.1038/nchembio860 PubMedCrossRefGoogle Scholar
  32. 32.
    Smith RA et al (2006) Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 116:2290–2296. doi: 10.1172/JCI25424 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293. doi: 10.1146/annurev.pharmtox.010909.105654 PubMedCrossRefGoogle Scholar
  34. 34.
    Chi X, Gatti P, Papoian T (2017) Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today. doi: 10.1016/j.drudis.2017.01.013
  35. 35.
    Longo PA, Kavran JM, Kim MS, Leahy DJ (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227–240. doi: 10.1016/B978-0-12-418687-3.00018-5 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Luo D, Saltzman WM (2000) Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biotechnol 18:893–895. doi: 10.1038/78523 PubMedCrossRefGoogle Scholar
  37. 37.
    Han IK et al (2007) Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy. J Mol Med (Berl) 85:75–83. doi: 10.1007/s00109-006-0114-9 CrossRefGoogle Scholar
  38. 38.
    Lu QL, Bou-Gharios G, Partridge TA (2003) Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther 10:131–142. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  39. 39.
    Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114:100–109. doi: 10.1016/j.jconrel.2006.04.014 PubMedCrossRefGoogle Scholar
  40. 40.
    Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48. doi: 10.1016/j.addr.2012.09.037 PubMedCrossRefGoogle Scholar
  41. 41.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347PubMedCrossRefGoogle Scholar
  42. 42.
    Audouy SA, de Leij LF, Hoekstra D, Molema G (2002) In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res 19:1599–1605PubMedCrossRefGoogle Scholar
  43. 43.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. doi: 10.1056/NEJMra0708126 PubMedCrossRefGoogle Scholar
  44. 44.
    Rouse C, Gittleman H, Ostrom QT, Kruchko C, Barnholtz-Sloan JS (2016) Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro-Oncology 18:70–77. doi: 10.1093/neuonc/nov249 PubMedCrossRefGoogle Scholar
  45. 45.
    Grossman SA et al (2010) Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 16:2443–2449. doi: 10.1158/1078-0432.CCR-09-3106 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12:495–508. doi: 10.1038/nrn3060 PubMedCrossRefGoogle Scholar
  47. 47.
    Cuddapah VA, Robel S, Watkins S, Sontheimer H (2014) A neurocentric perspective on glioma invasion. Nat Rev Neurosci 15:455–465. doi: 10.1038/nrn3765 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Osuka S, Van Meir EG (2017) Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 127:415–426. doi: 10.1172/JCI89587 PubMedCrossRefGoogle Scholar
  49. 49.
    Chen J et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. doi: 10.1038/nature11287 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Moolten FL (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46:5276–5281PubMedGoogle Scholar
  51. 51.
    Rainov NG (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11:2389–2401. doi: 10.1089/104303400750038499 PubMedCrossRefGoogle Scholar
  52. 52.
    Ram Z et al (1997) Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 3:1354–1361PubMedCrossRefGoogle Scholar
  53. 53.
    Klatzmann D et al (1998) A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther 9:2595–2604. doi: 10.1089/hum.1998.9.17-2595 PubMedCrossRefGoogle Scholar
  54. 54.
    Shand N et al (1999) A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum Gene Ther 10:2325–2335. doi: 10.1089/10430349950016979 PubMedCrossRefGoogle Scholar
  55. 55.
    Prados MD et al (2003) Treatment of progressive or recurrent glioblastoma multiforme in adults with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration: a phase I/II multi-institutional trial. J Neuro-Oncol 65:269–278CrossRefGoogle Scholar
  56. 56.
    Sandmair AM et al (2000) Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 11:2197–2205. doi: 10.1089/104303400750035726 PubMedCrossRefGoogle Scholar
  57. 57.
    Immonen A et al (2004) AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 10:967–972. doi: 10.1016/j.ymthe.2004.08.002 PubMedCrossRefGoogle Scholar
  58. 58.
    Asaoka K, Tada M, Sawamura Y, Ikeda J, Abe H (2000) Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus receptor. J Neurosurg 92:1002–1008. doi: 10.3171/jns.2000.92.6.1002 PubMedCrossRefGoogle Scholar
  59. 59.
    Bergelson JM et al (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323PubMedCrossRefGoogle Scholar
  60. 60.
    Blackford AN, Grand RJ (2009) Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 83:4000–4012. doi: 10.1128/JVI.02417-08 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yew PR, Berk AJ (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357:82–85. doi: 10.1038/357082a0 PubMedCrossRefGoogle Scholar
  62. 62.
    O’Shea CC et al (2004) Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6:611–623. doi: 10.1016/j.ccr.2004.11.012 PubMedCrossRefGoogle Scholar
  63. 63.
    Gomez-Manzano C et al (2004) A novel E1A-E1B mutant adenovirus induces glioma regression in vivo. Oncogene 23:1821–1828. doi: 10.1038/sj.onc.1207321 PubMedCrossRefGoogle Scholar
  64. 64.
    Fueyo J et al (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19:2–12. doi: 10.1038/sj.onc.1203251 PubMedCrossRefGoogle Scholar
  65. 65.
    Chiocca EA et al (2004) A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 10:958–966. doi: 10.1016/j.ymthe.2004.07.021 PubMedCrossRefGoogle Scholar
  66. 66.
    Galanis E et al (2005) Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther 12:437–445. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  67. 67.
    Reid TR, Freeman S, Post L, McCormick F, Sze DY (2005) Effects of Onyx-015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther 12:673–681. doi: 10.1038/sj.cgt.7700819 PubMedCrossRefGoogle Scholar
  68. 68.
    van Beusechem VW et al (2003) Conditionally replicative adenovirus expressing a targeting adapter molecule exhibits enhanced oncolytic potency on CAR-deficient tumors. Gene Ther 10:1982–1991. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  69. 69.
    Lamfers ML et al (2002) Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 62:5736–5742PubMedGoogle Scholar
  70. 70.
    Suzuki K et al (2001) A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 7:120–126PubMedGoogle Scholar
  71. 71.
    Whisenhunt TR Jr, Rajneesh KF, Hackney JR, Markert JM (2015) Extended disease-free interval of 6 years in a recurrent glioblastoma multiforme patient treated with G207 oncolytic viral therapy. Oncolytic Virother 4:33–38. doi: 10.2147/OV.S62461 PubMedPubMedCentralGoogle Scholar
  72. 72.
    Markert JM et al (2014) A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 22:1048–1055. doi: 10.1038/mt.2014.22 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Markert JM et al (2009) Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 17:199–207. doi: 10.1038/mt.2008.228 PubMedCrossRefGoogle Scholar
  74. 74.
    Markert JM et al (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7:867–874. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  75. 75.
    Voges J et al (2003) Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 54:479–487. doi: 10.1002/ana.10688 PubMedCrossRefGoogle Scholar
  76. 76.
    Ren H et al (2003) Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene – a phase I/II clinical protocol. J Neuro-Oncol 64:147–154Google Scholar
  77. 77.
    Bogdahn U et al (2011) Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology 13:132–142. doi: 10.1093/neuonc/noq142 PubMedCrossRefGoogle Scholar
  78. 78.
    Han J, Alvarez-Breckenridge CA, Wang QE, Yu J (2015) TGF-beta signaling and its targeting for glioma treatment. Am J Cancer Res 5:945–955PubMedPubMedCentralGoogle Scholar
  79. 79.
    Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23. doi: 10.1038/nn.3584 PubMedCrossRefGoogle Scholar
  80. 80.
    Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 330:585–591. doi: 10.1056/NEJM199403033300901 PubMedCrossRefGoogle Scholar
  81. 81.
    Azzouz M et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417PubMedCrossRefGoogle Scholar
  82. 82.
    Ikeda K et al (1995) Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann Neurol 37:505–511. doi: 10.1002/ana.410370413 PubMedCrossRefGoogle Scholar
  83. 83.
    Krakora D et al (2013) Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther: J Am Soc Gene Ther 21:1602–1610. doi: 10.1038/mt.2013.108 CrossRefGoogle Scholar
  84. 84.
    Sagot Y et al (1995) Polymer encapsulated cell lines genetically engineered to release ciliary neurotrophic factor can slow down progressive motor neuronopathy in the mouse. Eur J Neurosci 7:1313–1322. doi: 10.1111/j.1460-9568.1995.tb01122.x PubMedCrossRefGoogle Scholar
  85. 85.
    Storkebaum E et al (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–92. doi: 10.1038/nn1360 PubMedCrossRefGoogle Scholar
  86. 86.
    Suzuki M et al (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther: J Am Soc Gene Ther 16:2002–2010. doi: 10.1038/mt.2008.197 CrossRefGoogle Scholar
  87. 87.
    Sufit RL, Ajroud-Driss S, Casey P, Kessler JA (2017) Open label study to assess the safety of VM202 in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degeneration 0:1–10. doi: 10.1080/21678421.2016.1259334 Google Scholar
  88. 88.
    Miller RG et al (1996) Toxicity and tolerability of recombinant human ciliary neurotrophic factor in patients with amyotrophic lateral sclerosis. Neurology 47:1329–1331PubMedCrossRefGoogle Scholar
  89. 89.
    Aebischer P et al (1996) Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med 2:696–699. doi: 10.1038/nm0696-696 PubMedCrossRefGoogle Scholar
  90. 90.
    Bongioanni P, Reali C, Sogos V (2004) Ciliary neurotrophic factor (CNTF) for amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Rev…Google Scholar
  91. 91.
    Group, T. B. S (1999) A controlled trial of recombinant methionyl human BDNF in ALS. Neurology 52:1427–1427. doi: 10.1212/WNL.52.7.1427 CrossRefGoogle Scholar
  92. 92.
    Beauverd M, Mitchell JD, Wokke JH, Borasio GD (2012) Recombinant human insulin-like growth factor I (rhIGF-I) for the treatment of amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev, N.PAG-N.PAG, doi: 10.1002/
  93. 93.
    Rosen DR et al (1993) Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62. doi: 10.1038/362059a0 PubMedCrossRefGoogle Scholar
  94. 94.
    Wong PC, Cai H, Borchelt DR, Price DL (2001) Genetically engineered models relevant to neurodegenerative disorders: their value for understanding disease mechanisms and designing/testing experimental therapeutics. J Mol Neurosci 17:233–257. doi: 10.1385/JMN:17:2:233 PubMedCrossRefGoogle Scholar
  95. 95.
    Saccon RA, Bunton-Stasyshyn RKA, Fisher EMC, Fratta P (2013) Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain J Neurol 136:2342–2358. doi: 10.1093/brain/awt097 CrossRefGoogle Scholar
  96. 96.
    Gurney ME et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science (New York, N.Y.) 264:1772–1775. doi: 10.1126/science.8209258 CrossRefGoogle Scholar
  97. 97.
    Tu P-hH et al (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci 93:3155–3160PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Foust KD et al (2013) Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol Ther: J Am Soc Gene Ther 21:2148–2159. doi: 10.1038/mt.2013.211 CrossRefGoogle Scholar
  99. 99.
    Ralph GS et al (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11:429–433. doi: 10.1038/nm1205 PubMedCrossRefGoogle Scholar
  100. 100.
    Raoul C et al (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11:423–428. doi: 10.1038/nm1207 PubMedCrossRefGoogle Scholar
  101. 101.
    Stoica L et al (2016) Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model. Ann Neurol 79:687–700. doi: 10.1002/ana.24618 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Miller TM et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12:435–442. doi: 10.1016/S1474-4422(13)70061-9 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Finkel RS et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 6736:2–11. doi: 10.1016/S0140-6736(16)31408-8 Google Scholar
  104. 104.
    Passini MA et al (2011) Antisense Oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Science Transl Med 3:72ra18–72ra18. doi: 10.1126/scitranslmed.3001777
  105. 105.
    Foust KD et al (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28:271–274. doi: 10.1038/nbt.1610 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Passini MA et al (2010) CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 120:1253–1253. doi: 10.1172/JCI41615DS1 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Valori CF et al (2010) Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med 2:35ra42–35ra42. doi: 10.1126/scitranslmed.3000830 PubMedCrossRefGoogle Scholar
  108. 108.
    Cookson MR, Bandmann O (2010) Parkinson’s disease: insights from pathways. Hum Mol Genet 19:R21–R27. doi: 10.1093/hmg/ddq167 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909PubMedCrossRefGoogle Scholar
  110. 110.
    Herzog CD et al (2007) Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 22:1124–1132. doi: 10.1002/mds.21503 PubMedCrossRefGoogle Scholar
  111. 111.
    Gasmi M et al (2007) Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson’s disease. Mol Ther 15:62–68. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  112. 112.
    Gasmi M et al (2007) AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis 27:67–76. doi: 10.1016/j.nbd.2007.04.003 PubMedCrossRefGoogle Scholar
  113. 113.
    Horger BA et al (1998) Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 18:4929–4937PubMedGoogle Scholar
  114. 114.
    Kotzbauer PT et al (1996) Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384:467–470. doi: 10.1038/384467a0 PubMedCrossRefGoogle Scholar
  115. 115.
    Marks WJ Jr et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7:400–408. doi: 10.1016/S1474-4422(08)70065-6 PubMedCrossRefGoogle Scholar
  116. 116.
    Marks WJ Jr et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–1172. doi: 10.1016/S1474-4422(10)70254-4 PubMedCrossRefGoogle Scholar
  117. 117.
    Herzog CD et al (2013) Enhanced neurotrophic distribution, cell signaling and neuroprotection following substantia nigral versus striatal delivery of AAV2-NRTN (CERE-120). Neurobiol Dis 58:38–48. doi: 10.1016/j.nbd.2013.04.011 PubMedCrossRefGoogle Scholar
  118. 118.
    Bartus RT et al (2013) Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 80:1698–1701. doi: 10.1212/WNL.0b013e3182904faa PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Marks WJ Jr, Baumann TL, Bartus RT (2016) Long-term safety of patients with Parkinson’s disease receiving rAAV2-Neurturin (CERE-120) gene transfer. Hum Gene Ther 27:522–527. doi: 10.1089/hum.2015.134 PubMedCrossRefGoogle Scholar
  120. 120.
    Mercuri NB, Bernardi G (2005) The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol Sci 26:341–344. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  121. 121.
    Sanftner LM et al (2005) AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp Neurol 194:476–483. doi: 10.1016/j.expneurol.2005.03.007 PubMedCrossRefGoogle Scholar
  122. 122.
    Sanchez-Pernaute R, Harvey-White J, Cunningham J, Bankiewicz KS (2001) Functional effect of adeno-associated virus mediated gene transfer of aromatic L-amino acid decarboxylase into the striatum of 6-OHDA-lesioned rats. Mol Ther 4:324–330. doi: 10.1006/mthe.2001.0466 PubMedCrossRefGoogle Scholar
  123. 123.
    Bankiewicz KS et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14. doi: 10.1006/exnr.2000.7408 PubMedCrossRefGoogle Scholar
  124. 124.
    Forsayeth JR et al (2006) A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther 14:571–577. doi: 10.1016/j.ymthe.2006.04.008 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Bankiewicz KS et al (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14:564–570. doi: 10.1016/j.ymthe.2006.05.005 PubMedCrossRefGoogle Scholar
  126. 126.
    Mittermeyer G et al (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23:377–381. doi: 10.1089/hum.2011.220 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Christine CW et al (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73:1662–1669. doi: 10.1212/WNL.0b013e3181c29356 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Eberling JL et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980–1983. doi: 10.1212/01.wnl.0000312381.29287.ff PubMedCrossRefGoogle Scholar
  129. 129.
    Muramatsu S et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18:1731–1735. doi: 10.1038/mt.2010.135 PubMedCentralCrossRefGoogle Scholar
  130. 130.
    Azzouz M et al (2002) Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci 22:10302–10312PubMedGoogle Scholar
  131. 131.
    Palfi S et al (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383:1138–1146. doi: 10.1016/S0140-6736(13)61939-X PubMedCrossRefGoogle Scholar
  132. 132.
    Stewart HJ et al (2016) Optimizing transgene configuration and protein fusions to maximize dopamine production for the gene therapy of Parkinson’s disease. Hum Gene Ther Clin Dev 27:100–110. doi: 10.1089/humc.2016.056 PubMedCrossRefGoogle Scholar
  133. 133.
    Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798. doi: 10.1038/nrn1763 PubMedCrossRefGoogle Scholar
  134. 134.
    Shepherd GM (2013) Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14:278–291. doi: 10.1038/nrn3469 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Luo J et al (2002) Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 298:425–429. doi: 10.1126/science.1074549 PubMedCrossRefGoogle Scholar
  136. 136.
    Kaplitt MG et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105. doi: 10.1016/S0140-6736(07)60982-9 PubMedCrossRefGoogle Scholar
  137. 137.
    LeWitt PA et al (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10:309–319. doi: 10.1016/S1474-4422(11)70039-4 PubMedCrossRefGoogle Scholar
  138. 138.
    Ross CA, Tabrizi SJ (2011) Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98. doi: 10.1016/S1474-4422(10)70245-3 PubMedCrossRefGoogle Scholar
  139. 139.
    Kordasiewicz HB et al (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74:1031–1044. doi: 10.1016/j.neuron.2012.05.009 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Franich NR et al (2008) AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther 16:947–956. doi: 10.1038/mt.2008.50 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ (2005) Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 12:618–633. doi: 10.1016/j.ymthe.2005.05.006 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Ostergaard ME et al (2013) Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 41:9634–9650. doi: 10.1093/nar/gkt725 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Anderson KD, Panayotatos N, Corcoran TL, Lindsay RM, Wiegand SJ (1996) Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington disease. Proc Natl Acad Sci U S A 93:7346–7351PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Poduslo JF, Curran GL (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res 36:280–286PubMedCrossRefGoogle Scholar
  145. 145.
    Emerich DF et al (1997) Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature 386:395–399. doi: 10.1038/386395a0 PubMedCrossRefGoogle Scholar
  146. 146.
    Bachoud-Levi AC et al (2000) Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. Hum Gene Ther 11:1723–1729. doi: 10.1089/10430340050111377 PubMedCrossRefGoogle Scholar
  147. 147.
    Bloch J et al (2004) Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 15:968–975. doi: 10.1089/hum.2004.15.968 PubMedCrossRefGoogle Scholar
  148. 148.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112. doi: 10.1038/nrm2101 PubMedCrossRefGoogle Scholar
  149. 149.
    Selkoe DJ, Podlisny MB (2002) Deciphering the genetic basis of Alzheimer’s disease. Annu Rev Genomics Hum Genet 3:67–99. doi: 10.1146/annurev.genom.3.022502.103022 PubMedCrossRefGoogle Scholar
  150. 150.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356. doi: 10.1126/science.1072994 PubMedCrossRefGoogle Scholar
  151. 151.
    Cai H et al (2001) BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci 4:233–234. doi: 10.1038/85064 PubMedCrossRefGoogle Scholar
  152. 152.
    Laird FM et al (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25:11693–11709. doi: 10.1523/JNEUROSCI.2766-05.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Yan R, Vassar R (2014) Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13:319–329. doi: 10.1016/S1474-4422(13)70276-X PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Vassar R (2014) BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 6:89. doi: 10.1186/s13195-014-0089-7 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Sweeney G, Song J (2016) The association between PGC-1alpha and Alzheimer’s disease. Anat Cell Biol 49:1–6. doi: 10.5115/acb.2016.49.1.1 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Katsouri L et al (2016) PPARgamma-coactivator-1alpha gene transfer reduces neuronal loss and amyloid-beta generation by reducing beta-secretase in an Alzheimer’s disease model. Proc Natl Acad Sci U S A 113:12292–12297. doi: 10.1073/pnas.1606171113 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Braidy N et al (2016) Resveratrol as a potential therapeutic candidate for the treatment and management of Alzheimer’s disease. Curr Top Med Chem 16:1951–1960PubMedCrossRefGoogle Scholar
  158. 158.
    Lagouge M et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122. doi: 10.1016/j.cell.2006.11.013 PubMedCrossRefGoogle Scholar
  159. 159.
    Wang R, Zhang Y, Li J, Zhang C (2017) Resveratrol ameliorates spatial learning memory impairment induced by Abeta1-42 in rats. Neuroscience 344:39–47. doi: 10.1016/j.neuroscience.2016.08.051 PubMedCrossRefGoogle Scholar
  160. 160.
    Kim D et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179. doi: 10.1038/sj.emboj.7601758 PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Turner RS et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85:1383–1391. doi: 10.1212/WNL.0000000000002035 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Triaca V, Calissano P (2016) Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons: the incipit of the Alzheimer’s disease story? Neural Regen Res 11:1553–1556. doi: 10.4103/1673-5374.193224 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190PubMedCrossRefGoogle Scholar
  164. 164.
    Tuszynski MH et al (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72:1139–1147. doi: 10.1001/jamaneurol.2015.1807 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Tuszynski MH et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555. doi: 10.1038/nm1239 PubMedCrossRefGoogle Scholar
  166. 166.
    Bishop KM et al (2008) Therapeutic potential of CERE-110 (AAV2-NGF): targeted, stable, and sustained NGF delivery and trophic activity on rodent basal forebrain cholinergic neurons. Exp Neurol 211:574–584. doi: 10.1016/j.expneurol.2008.03.004 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Rafii MS et al (2014) A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement 10:571–581. doi: 10.1016/j.jalz.2013.09.004 PubMedCrossRefGoogle Scholar
  168. 168.
    Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012 – an update. J Gene Med 15:65–77. doi: 10.1002/jgm.2698 PubMedCrossRefGoogle Scholar
  169. 169.
    Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007 – an update. J Gene Med 9:833–842. doi: 10.1002/jgm.1100 PubMedCrossRefGoogle Scholar
  170. 170.
    Edelstein ML, Abedi MR, Wixon J, Edelstein RM (2004) Gene therapy clinical trials worldwide 1989–2004-an overview. J Gene Med 6:597–602. doi: 10.1002/jgm.619 PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Jayanth S. Chandran
    • 1
  • Joseph M. Scarrott
    • 1
  • Pamela J. Shaw
    • 1
  • Mimoun Azzouz
    • 1
    Email author
  1. 1.Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK

Personalised recommendations