Advertisement

Assessing the Effectiveness of Climate Finance: Composite Indicators and Quantile Regression

  • Antonio A. Romano
  • Giuseppe Scandurra
  • Alfonso Carfora
  • Monica Ronghi
Chapter
Part of the SpringerBriefs in Climate Studies book series (BRIEFSCLIMATE)

Abstract

In this chapter we briefly explain methods proposed to assess the effectiveness of the climate funds to reduce the greenhouse gas emissions.

Greenhouse gas emissions are constituted by Carbon Dioxide (CO2), Methane (CH4), Nitrous oxide (N2O) and Chlorofluorocarbons (CFCs), hydro chlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), together called F-gases.

Considering the multidimensional concept and the complexity of the topic we first explain the composite indicator as useful tools to summarize in one indicator the individual components of the greenhouse gas emissions and to compare performances of the countries. Second, we describe the quantile regression, focusing on the theory and possible applications in research fields of interest. Quantile regression, in fact, is one of the tools used to assess the effects of economic policies on some of the target variables.

Keywords

Greenhouse gas Composite indicators Principal components analysis Weighting methods Quantile regression Clustered data 

References

  1. Allison PD (2001) Missing data, sage university papers series on quantitative applications in the social sciences, series no. 07–136, Thousand OaksGoogle Scholar
  2. Buchinsky M (1998) Recent advances in quantile regression models: a practical guideline for empirical research. J Hum Resour 33(1):88–126. doi: 10.2307/146316 CrossRefGoogle Scholar
  3. Chamberlain G (1994) Quantile regression, censoring, and the structure of wages. In: CA Sims (Ed.) Advances in Econometrics: Volume 1: Sixth World Congress, chapter 5, Cambridge University PressGoogle Scholar
  4. Cherchye L, Moesen W, Rogge N, van Puyenbroeck T, Saisana M, Saltelli A, Liska R, Tarantola S (2008) Creating composite indicators with DEA and robustness analysis: the case of the technology achievement index. J Oper Res Soc 59:239–251CrossRefGoogle Scholar
  5. Davino C, Furno M, Vistocco D (2014) Quantile regression. Theory and applications. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd.Google Scholar
  6. Doukas H, Papadopoulou A, Savvakis N, Tsoutsos T, Psarras J (2012) Assessing energy sustainability of rural communities using Principal Component Analysis. Renew Sustain Energy Rev 16(4):1949–1957. doi: 10.1016/j.rser.2012.01.018 CrossRefGoogle Scholar
  7. Freudenberg M (2003) Composite indicators of country performance: a critical assessment. OECD, ParisCrossRefGoogle Scholar
  8. Government Statistical Service (GSS) (1996) Report of the task force on imputation, government statistical service methodology series, 3, LondonGoogle Scholar
  9. Hudrilikova L (2013) Composite indicators as a useful tool for international comparison: the Europe 2020 example. Prague Economic Papers 4:459–473CrossRefGoogle Scholar
  10. Ibrahim JG, Chen MH, Lipsitz SR, Herring AH (2005) Missing-data methods for generalised linear models: a comparative review. J Am Stat Assoc 100(469):332–346CrossRefGoogle Scholar
  11. IEA, World Energy Outlook 2013 (2013)Google Scholar
  12. IPCC (2014) Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. In: Edenhofer O, Pichs-Madruga R, SokonaY, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T and Minx JC (eds). Cambridge University Press, Cambridge/New YorkGoogle Scholar
  13. Jacobs R, Smith P, Goddard M (2004) Measuring performance: an examination of composite performance indicators, Centre for Health Economics, Technical Paper Series 29Google Scholar
  14. Kim TH, White H (2003) Estimation, inference, and specification testing for possibly misspecified quantile regression. Adv Econ 17:107–132. doi: 10.1016/S0731-9053(03)17005-3 Google Scholar
  15. Koenker R, Bassett GS Jr (1978) Regression Quantiles. Econometrica 46:33–50CrossRefGoogle Scholar
  16. Little RJA, Rubin DB (2002) Statistical analysis with missing data, wiley interscience. J. Wiley &Sons, HobokenGoogle Scholar
  17. Liu X (2005) Explaining the relationship between CO2 emissions and national income—The role of energy consumption. Econ Lett 87(3), June 2005, 325–328 http://dx.doi.org/10.1016/j.econlet.2004.09.015
  18. Marques AC, Fuinhas JA (2012) Are public policies towards renewables successful? Evidence from European countries. Renew Energy 44:109–118CrossRefGoogle Scholar
  19. Melyn W, Moesen WW (1991) Towards a synthetic indicator of macroeconomic performance: unequal weighting when limited information is available, Public Economic research Paper 17, CES, KU LeuvenGoogle Scholar
  20. Munda G (2005a) Multi-criteria decision analysis and sustainable development. In: Figueira J, Greco S, Ehrgott M (eds) Multiple-criteria decision analysis. State of the art surveys. Springer, New YorkGoogle Scholar
  21. Munda G (2005b) “Measuring sustainability”: a multi-criterion framework. Environ Dev Sustain 7(1):117–134CrossRefGoogle Scholar
  22. Munda G (2007) Social multi-criteria evaluation. Springer-Verlag, Heidelberg/New York. Economics SeriesGoogle Scholar
  23. Munda G, Nardo M (2007) Non-compensatory/non-linear composite indicators for ranking countries: a defensible setting. Appl Econ 41:1513–1523CrossRefGoogle Scholar
  24. Mundaca L, Román R, Cansino JM (2015) Towards a green energy economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions. Appl Energy 148, 15 June 2015, 196–209 http://dx.doi.org/10.1016/j.apenergy.2015.03.029
  25. Nardo M, Tarantola S, Saltelli A, Andropoulos C, Buescher R, Karageorgos G, Latvala A, Noel F (2004) The e-business readiness composite indicator for 2003: a pilot study, EUR 21294Google Scholar
  26. Nicoletti G, Scarpetta S, Boylaud O (2000) Summary indicators of product market regulation with an extension to employment protection legislation, OECD, Economics department working papers No. 226, ECO/WKP(99)18. http://www.oecd.org/eco/eco
  27. OECD (2008) Handbok on constructing composite indicators. Methodology and user guide. OECD, ParisGoogle Scholar
  28. Parente PM, Santos Silva J (2016) Quantile regression with clustered data. J Econ Methods 5(1):1–15. doi: 10.1515/jem-2014-0011 CrossRefGoogle Scholar
  29. Powell JL (1984) Least absolute deviations estimation for the censored regression model. J Econ 25(3):303–325. doi: 10.1016/0304-4076(84)90004-6 CrossRefGoogle Scholar
  30. Quintano C, Castellano R (2001) Strategies for dealing with non-responses for quality in some ISTAT surveys, Essays-ISTAT, n 11: 1–110Google Scholar
  31. Ranganai E, Van Vuuren JO, De Wet T (2014) Multiple case high leverage diagnosis in regression quantiles. Commun Stat Theory Methods 43(16):3343–3370CrossRefGoogle Scholar
  32. Saisana M, Tarantola S (2002) State-of-the-art report on current methodologies and practices for composite indicator development, EUR 20408 EN. Italy, European Commission-JRCGoogle Scholar
  33. Schafer JL, Graham JW (2002) Missing data: our view of the state of the art. Psychol Methods 7(2):147–177CrossRefGoogle Scholar
  34. Van Ruijven B, van Vuuren DP (2009) Oil and natural gas prices and greenhouse gas emission mitigation. Energy Policy 37(11):4797–4808CrossRefGoogle Scholar
  35. Yu K, Lu Z, Stander J (2003) Quantile regression: applications and current research areas. The Statistician 52(3):331–350Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Antonio A. Romano
    • 1
  • Giuseppe Scandurra
    • 1
  • Alfonso Carfora
    • 2
  • Monica Ronghi
    • 1
  1. 1.Department of Management Studies and Quantitative MethodsUniversity of Naples “Parthenope”NaplesItaly
  2. 2.Italian Revenue AgencyRomeItaly

Personalised recommendations