Skip to main content

A receding-horizon approach to state estimation of the battery assembly system

  • Conference paper
  • First Online:
Trends in Advanced Intelligent Control, Optimization and Automation (KKA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 577))

Included in the following conference series:

Abstract

The paper addresses the issue of the state estimation problem of a class of discrete-event systems. The receding-horizon approach is employed to solve above problem. The system and its variables are described within the (max,+) algebra. Thus making possible to incorporate robustness within the overall framework. The paper also shows the transformation of the interval cost function into the scalar one, and hence, making the computational procedure trackable within the quadratic programming framework. Resulting in interval estimates of the system state, which can be used for both fault diagnosis and control purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and linearity: an algebra for discrete event systems. JOURNAL-OPERATIONAL RESEARCH SOCIETY 45, 118–118 (1994)

    Google Scholar 

  • 2. Butkovic, P.: Max-linear systems: theory and algorithms. Springer (2010)

    Google Scholar 

  • 3. Cechlárová, K.: Eigenvectors of interval matrices over max–plus algebra. Discrete applied mathematics 150(1), 2–15 (2005)

    Google Scholar 

  • 4. Elbanhawi, M., Simic, M., Jazar, R.: Receding horizon lateral vehicle control for pure pursuit path tracking. Journal of Vibration and Control p. 1077546316646906 (2016)

    Google Scholar 

  • 5. Hardouin, L., Maia, C., Cottenceau, B., Mendes, R.S.: Max-plus linear observer: Application to manufacturing systems. IFAC Proceedings Volumes 43(12), 161–166 (2010)

    Google Scholar 

  • 6. Heidergott, B., Olsder, G., van der Woude, J.: Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications. Princeton Series in Applied Mathematics, Princeton University Press (2014), https://books.google.pl/books?id=yPocBAAAQBAJ

  • 7. Ling, K.V., Lim, K.W.: Receding horizon recursive state estimation. IEEE Transactions on Automatic Control 44(9), 1750–1753 (1999)

    Google Scholar 

  • 8. Majdzik, P., Akielaszek-Witczak, A., Seybold, L., Stetter, R., Mrugalska, B.: A fault-tolerant approach to the control of a battery assembly system. Control Engineering Practice 55, 139–148 (2016)

    Google Scholar 

  • 9. Mrugalski, M.: Advanced neural network-based computational schemes for robust fault diagnosis, ISBN: 978-3-319-01546-0. Studies in Computational Intelligence, Vol. 510, Springer-Verlag, Berlin - Heidelberg (2014)

    Google Scholar 

  • 10. Polak, M., Majdzik, P., Banaszak, Z., Wójcik, R.: The performance evaluation tool for automated prototyping of concurrent cyclic processes. Fundamenta Informaticae 60(1-4), 269–289 (2004)

    Google Scholar 

  • 11. Puig, V.: Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies. International Journal of Applied Mathematics and Computer Science 20(4), 619–635 (2010)

    Google Scholar 

  • 12. Seybold, L., Witczak, M., Majdzik, P., Stetter, R.: Towards robust predictive fault–tolerant control for a battery assembly system. International Journal of Applied Mathematics and Computer Science 25(4), 849–862 (2015)

    Google Scholar 

  • 13. Theilliol, D., Join, C., Zhang, Y.: Actuator fault tolerant control design based on a reconfigurable reference input. International Journal of Applied Mathematics and Computer Science 18(4), 553–560 (2008)

    Google Scholar 

  • 14. Witczak, P., Luzar, M., Witczak, M., Korbicz, J.: A robust fault-tolerant model predictive control for linear parameter-varying systems. In: Proceedings of Methods and Models in Automation and Robotics - MMAR. pp. 462–467 (2014)

    Google Scholar 

  • 15. Yoon, T.W., Clarke, D.W.: Observer design in receding-horizon predictive control. International Journal of Control 61(1), 171–191 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Majdzik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Majdzik, P., Stetter, R. (2017). A receding-horizon approach to state estimation of the battery assembly system. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-60699-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60699-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60698-9

  • Online ISBN: 978-3-319-60699-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics