Skip to main content

Chapter 11 Germline Gene Therapy in the Era of Precise Genome Editing: How Far Should We Go?

  • Chapter
  • First Online:
The Ethics of Reproductive Genetics

Part of the book series: Philosophy and Medicine ((PHME,volume 128))

Abstract

Since the creation of the first transgenic animals four decades ago, a wide ethical consensus has been reached that in contrast to a somatic gene therapy, germline gene interventions in humans are not to be allowed. Legislation in many countries reflects this consensus but this ethical taboo has recently been challenged. First, by the decision of the British Parliament to allow fertility clinics to carry out mitochondrial replacements in February 2015 and second, by the announcement of Chinese scientists in April 2015 that they had already edited germline genes in non-viable human embryos by CRISPR-Cas9 technology. The CRISPR-Cas 9 is a revolutionary new technology for a targeted editing of DNA – effective, cheap and easy to use. Until recently, unintended off-target changes in the genome caused by classical genetic engineering technologies were seen as a major safety obstacle for using them for human germline modifications. The very recent rapid progress in increasing the precision of genome editing by CRISPR-Cas 9 in order to minimize off-target changes will bring the technology in the near future to the acceptable safety level ready to use for clinical trials, but only in those cases when a mutant, disease causing DNA sequence is corrected to a healthy wild-type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson WR (1989) Human gene therapy: why draw a line? J Med Phil 14:681–693

    Article  Google Scholar 

  • Annas GJ, Andrews LB, Isasi RM (2002) Protecting the endangered human: toward an international treaty prohibiting cloning and inheritable alterations. Am J Law Med 28(2/3):151–178

    Google Scholar 

  • Baltimore D, Berg P, Borchan M et al (2015) A prudent path forward for genomic engineering and germline gene modification. Science 248(6230):36–38

    Article  Google Scholar 

  • Bostrom N, Sandberg A (2009) The wisdom of nature: an evolutionary heuristic for human enhancement. In: Savulescu J, Bostrom N (eds) Human enhancement. Oxford University Press, Oxford, pp 375–416

    Google Scholar 

  • Buchanan A (2011) Beyond humanity? Oxford University Press, Oxford

    Book  Google Scholar 

  • Campbell J, Stock G (2000) A vision for practical human germline engineering. In: Stock G, Campbell J (eds) Engineering the human genome. Oxford University Press, New York, pp 9–16

    Google Scholar 

  • Capecchi MR (1994) Targeted gene replacement. Sci Am 270(3):52–59

    Article  Google Scholar 

  • Capecchi MR (2000) Human germline gene therapy: how and why. In: Stock G, Campbell J (eds) Engineering the human genome. Oxford University Press, New York, pp 31–42

    Google Scholar 

  • Coghlan A (2016) First monkey genetically engineered to have Parkinson’s created. New Scientist on-line (15 June 2016, update 21). https://www.newscientist.com/article/mg23030784-200-first-monkey-model-of-parkinsons/. Accessed 10 Jul 2016

  • Corrigan-Curray J, O’ Reilly M, Kohn DB et al (2015) Genome editing technologies: defining a path to clinic. Mol Ther 23(5):796–806

    Article  Google Scholar 

  • Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21(2):121–131

    Article  Google Scholar 

  • Davis BD (1970) Prospects for genetic intervention in man. Science 170:1279–1283

    Article  Google Scholar 

  • Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  Google Scholar 

  • Evitt NH, Mascharak S, Altman RB (2015) Human germline CRISPR-Cas modification: toward a regulatory framework. Am J Bioeth 15(12):25–29

    Article  Google Scholar 

  • Frankel MS, Chapman AR (2000) Human inheritable genetic modifications. Assessing scientific, ethical, religious, and policy issues. American Association for the Advancement of Science, Washington, DC

    Google Scholar 

  • Fukuyama F (2002) Our posthuman future. Farrar, Straus and Giroux, New York

    Google Scholar 

  • Ginn SL, Alexander IE, Edelstein ML et al (2013) Gene therapy clinical trials worldwide to 2013 – an update. J Gene Med 15:65–77

    Article  Google Scholar 

  • Hacein-Bey-Abina S, Garrigue A, Wang GP et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clinic Investig 118(9):3132–3142

    Article  Google Scholar 

  • Harris J (2007) Enhancing evolution. Princeton University Press, Princeton

    Google Scholar 

  • HFEA (2015) Statement on mitochondrial donation. http://www.hfea.gov.uk/9606.html. Accessed 27 Jul 2016

  • Hsu PD, Lander ES, Zhang F (2014) Development and application of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  Google Scholar 

  • Ishii T (2015) Germ line genome editing in clinics: the approaches, objectives and global society. Brief Funct Genomics. doi:10.1093/bfgp/elv053

    Article  Google Scholar 

  • Jonsen AR (1998) The birth of bioethics. Oxford University Press, New York

    Google Scholar 

  • Kaas L, Balckburn E, Dresser RS et al (2003) Beyond therapy: biotechnology and the pursuit of human improvement. The President’s Council on Bioethics, Washington, DC

    Google Scholar 

  • Kaminski R, Chen Y, Fischer T et al (2016) Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 6:22555. doi:10.1038/srep22555

    Article  Google Scholar 

  • Kang X, He W, Huang Y et al (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 33:581. doi:10.1007/s10815-016-0710-8

    Article  Google Scholar 

  • Knapton S (2016) British scientists granted permission to genetically modify human embryos. The Telegraph. http://www.telegraph.co.uk/science/2016/03/12/british-scientists-granted-permission-to-genetically-modify-huma/. Accessed 8 Jul 2016

  • Knoepfler P (2015) GMO sapiens. World Scientific Publishing Co., Singapore

    Book  Google Scholar 

  • Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424. doi:10.1038/nature17946

    Article  Google Scholar 

  • Lanphier E, Urnov F, Haecker SE et al (2015) Don’t edit the human germ line. Nature 519:410–411

    Article  Google Scholar 

  • Ledford H (2015a) CRISPR, the disruptor. Nature 522:20–24

    Article  Google Scholar 

  • Ledford H (2015b) Biohackers gear up for genome editing. Nature 524:398

    Article  Google Scholar 

  • Le Page M (2015) Layla’s gene-editing legacy. New Sci 228(3047):10–11

    Article  Google Scholar 

  • Liang P, Xu Y, Zgang X et al (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6(5):363–372

    Article  Google Scholar 

  • Maeder ML, Gersbach CA (2016) Genome-editing technologies for gene and cell therapy. Mol Ther 24(3):430–446

    Article  Google Scholar 

  • Maner B (2012) The human encyclopedia. Nature 489:46–48

    Article  Google Scholar 

  • Mehlman MJ (2012) Transhumanist dreams and dystopian nightmares. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Niu Y, Shen B, Cui Y et al (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843

    Article  Google Scholar 

  • Nussbaum RL, McInnes RR, Willard HF (2007) Thomson and Thomson genetics in medicine, 7th edn. Saunders Elsevier, Philadelphia, pp 126–127

    Google Scholar 

  • Olson S (ed) (2016) International summit on human gene editing: a global discussion. Committee on Science, Technology, and Law; Policy and Global Affairs; National Academies of Sciences, Engineering, and Medicine. National Academies Press (US), Washington, DC. http://www.nap.edu/catalog/21913/international-summit-on-human-gene-editing-a-global-discussion. Accessed 10 Jul 2016

    Google Scholar 

  • Paquet D, Kwart D, Chen A et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129. doi:10.1038/nature17664

    Article  Google Scholar 

  • Park A (2016). A new technique that lets scientists edit DNA is transforming science and raising difficult questions. TIME 188(1). July 04. http://time.com/4379503/crispr-scientists-edit-dna/. Accessed 10 Jul 2016

  • Rasko JE, O’Sullivan GM, Ankeny RA (2006) The ethics of inheritable genetic modification. Cambridge University Press, Cambridge

    Google Scholar 

  • Reardon S (2016) First CRISPR clinical trial gets green light from US panel. Nature News (22 June). doi:10.1038/nature.2016.20137

    Google Scholar 

  • Resnik DB, Steinkraus HB, Langer PJ (1999) Human germline gene therapy: scientific, moral and political issues. Medical intelligence unit 9. R.G. Landes Company, Austin

    Google Scholar 

  • Silver LM (1997) Remaking eden. Avon Books, New York

    Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88. doi:10.1126/science.aad5227

    Article  Google Scholar 

  • Stock G (2003) Redesigning humans. Houghton Mifflin Company, Boston

    Google Scholar 

  • Taylor GR (1968) The biological time bomb. Thames and Hudson, London

    Google Scholar 

  • Wang X, Cao C, Huang J et al (2016) One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6:20620. doi:10.1038/srep20620

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0379-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sýkora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sýkora, P. (2018). Chapter 11 Germline Gene Therapy in the Era of Precise Genome Editing: How Far Should We Go?. In: Soniewicka, M. (eds) The Ethics of Reproductive Genetics. Philosophy and Medicine, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-60684-2_11

Download citation

Publish with us

Policies and ethics