Advertisement

An Exact Smoother in a Fuzzy Jump Markov Switching Model

  • Zied BouyahiaEmail author
  • Stéphane Derrode
  • Wojciech Pieczynski
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 684)

Abstract

In this paper, we proposed an extension of the classical Conditionally Gaussian Observed Markov Switching Model (CGOMSM) by incorporating fuzzy switches. The proposed approach allows the modeling of transient switches and handles the discontinuity feature in switching regime models by using fuzzy switches instead of hard jumps. Fuzzy switched based approach is more adapted to real-world application in which regime continuity is an intrinsic property. To define an efficient scheme for an exact smoothing in CGOMFSM, we adapt fast smoothing equations to cope with the fuzzy model. Finally, we show through several experiments the interest of the fuzzy switches model.

Keywords

Fuzzy switching models Exact smoothing Non-linear Markov systems 

References

  1. 1.
    Abbassi, N., Benboudjema, D., Derrode, S., Pieczynski, W.: Optimal filter approximations in conditionally gaussian pairwise Markov switching models. IEEE Trans. Autom. Control 60(4), 1104–1109 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Salzenstein, F., Collet, C.: Fuzzy Markov random fields versus chains for multispectral image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1753–1767 (2006)CrossRefGoogle Scholar
  3. 3.
    Caillol, H., Hillion, A., Pieczynski, W.: Fuzzy random fields and unsupervised image segmentation. IEEE Trans. Geosci. Remote Sensing 34(4), 801–810 (1993)CrossRefGoogle Scholar
  4. 4.
    Gorynin, I., Derrode, S., Monfrini, E., Pieczynski, W.: Exact fast smoothing in switching models with application to stochastic volatility. In: EUSIPCO, Nice, France, pp. 924–928, 31 August - 4, September 2015Google Scholar
  5. 5.
    Caillol, H., Pieczynski, W., Hillon, A.: Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation. IEEE Trans. Image Process. 6(3), 425–440 (1997)CrossRefGoogle Scholar
  6. 6.
    Yang, L., He, M., Zhang, J., Vittal, V.: Support vector machine enhanced Markov model for short term wind power forecast. IEEE Trans. Sustain. Energy 6(3), 791–799 (2015)CrossRefGoogle Scholar
  7. 7.
    Artemiadis, P.K., Kyriakopoulos, K.J.: A switching regime model for the EMG-based control of a robot arm. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 41(1), 53–63 (2011)CrossRefGoogle Scholar
  8. 8.
    Corff, S.L., Fort, G., Moulines, E.: Online expectation maximization algorithm to solve the SLAM problem. In: 2011 IEEE Statistical Signal Processing Workshop (SSP), pp. 225–228, Nice, June 2011Google Scholar
  9. 9.
    Gorynin, I., Derrode, S., Monfrini, E., Pieczynski, W.: Fast filtering in switching approximations of non-linear Markov switching systems with application to stochastic volatility. IEEE Trans. Autom. Control 62(2), 853–862 (2017)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ghysels, E., Harvey, A., Renault, E.: Stochastic volatility. In: Handbook of Statistics, vol. 14, pp. 119–192 (1995)Google Scholar
  11. 11.
    Koko, M.: Application of Markov-switching model to stock returns analysis. Dyn. Econometric Models 7, 259–268 (2006)Google Scholar
  12. 12.
    Baltzakis, H., Trahanias, P.: A hybrid framework for mobile robot localization: formulation using switching state-space models. Auton. Robots 15(2), 169–191 (2003)CrossRefGoogle Scholar
  13. 13.
    Salzenstein, F., Pieczynski, W.: Parameter estimation in hidden fuzzy Markov random fields and image segmentation. Graph. Model Image Process. 59(4), 205–220 (1997)CrossRefGoogle Scholar
  14. 14.
    Carincotte, C., Derrode, S., Sicot, G., Boucher, J.M.: Unsupervised Image segmentation based on a new fuzzy hidden Markov chain model. In: IEEE International Conference on Acoustic, Speech, Signal Processing, Montreal, Canada, May 2004 (2004)Google Scholar
  15. 15.
    Carincotte, C., Derrode, S., Bourennane, S.: Unsupervised change detection on SAR images using fuzzy hidden Markov chains. IEEE Trans. Geosci. Remote Sensing 44(2), 432–441 (2006)CrossRefGoogle Scholar
  16. 16.
    Pieczynski, W.: Exact filtering in conditionally Markov switching hidden linear models. Comptes Rendus Mathématique 349(9–10), 587–590 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gamal-Eldin, A., Salzenstein, F., Collet, C.: Hidden fuzzy Markov chain model with K discrete classes. In: 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), Kuala Lumpur, pp. 109–112, May 2010Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zied Bouyahia
    • 1
    Email author
  • Stéphane Derrode
    • 2
  • Wojciech Pieczynski
    • 3
  1. 1.Department of Computer Science, CAASDhofar UniversitySalalahOman
  2. 2.Ecole Centrale de Lyon, LIRIS, CNRS UMR 5205ÉcullyFrance
  3. 3.Telecom Sudparis, SAMOVAR, CNRS UMR 5157ÉvryFrance

Personalised recommendations