Skip to main content

Role of Nanomaterials as an Emerging Trend Towards the Detection of Winged Contaminants

  • Chapter
  • First Online:
Book cover Nanotechnology in Oil and Gas Industries

Abstract

Hydrocarbons are very important as efficient energy sources in our day-to-day life. But apart from their application point of view, the most concerned area is their toxicity. A large number of literatures are being reported describing the toxicity from the last few decades. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are the most common type of toxic hydrocarbons, most abundantly found in nature. Exhaust gas from motorbikes, combustion of coal, wood, and petroleum products are the major sources of those hydrocarbons. They are entering into the human or animal body by means of breathing, through skin, food, and water samples and caused various diseases including cancer. This makes their detection and extraction very much important. In this chapter, we have tried to sum up the source, contamination, and health effects of those hydrocarbons along with their detection and extraction techniques in combination with nanomaterials, reported so far. Major emphasis has been given on nanostructure-based sensing technique due to additional advantages and future point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • Adegoke O, Forbes PBC (2016) L-Cysteine-capped core/shell/shell quantum dot–graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection. Talanta 146:780–788

    Article  Google Scholar 

  • Akhbarizadeh R, Moore F, Keshavarzi B, Moeinpour A (2016) Aliphatic and polycyclic aromatic hydrocarbons risk assessment in coastal water and sediments of Khark Island, SW Iran. Marine Poll Bull 108:33–45

    Article  Google Scholar 

  • Alizadeh T, Rezaloo F (2013) A new chemiresistor sensor based on a blend of carbon nanotube, nano-sized molecularly imprinted polymer and poly methyl methacrylate for the selective and sensitive determination of ethanol vapour. Sens Actuators B 176:28–37

    Article  Google Scholar 

  • Armstrong BG, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112:970–978

    Article  Google Scholar 

  • Bach PB, Kelley MJ, Tate RC, McCrory DC (2003) Screening for lung cancer: a review of the current literature. Chest 123:72–82

    Article  Google Scholar 

  • Bagal LK, Patil JY, Vaishampayan MV, Mulla IS, Suryavanshi SS (2015) Effect of Pd and Ce on the enhancement of ethanol vapor response of SnO2 thick films. Sens Actuators B 207:383–390

    Article  Google Scholar 

  • Beegle LW, Wdowiak TJ, Harrison JG (2001) Hydrogenation of polycyclic aromatic hydrocarbons as a factor affecting the cosmic 6.2 micron emission band. Spectrochim Acta A 57:737–744

    Article  Google Scholar 

  • Bian Q, Alharbi B, Collett J Jr, Kreidenweis S, Pasha MJ (2016) Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia. Atmos Environ 137:186–198

    Article  Google Scholar 

  • Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Westerholm R, Victorin K (1999) Cancer risk assessment, indicators and guidelines for polycyclic aromatic hydrocarbons (PAH) in the ambient air. Swedish Environmental Protection Agency, Stockholm

    Google Scholar 

  • Cai Y, Yan Z, Van MN, Wang L, Cai Q (2015) Magnetic solid phase extraction and gas chromatography–mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons. J Chromatogr A 1406:40–47

    Article  Google Scholar 

  • Cai Y, Yan Z, Wang L, Van MN, Cai Q (2016) Magnetic solid phase extraction and static headspace gas chromatography–mass spectrometry method for the analysis of polycyclic aromatic hydrocarbon. J Chromatogr A 1429:97–106

    Article  Google Scholar 

  • Chang C-T, Chen B-Y (2008) Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust. J Hazard Mater 153:1262–1269

    Article  Google Scholar 

  • Chauhan A, Bhatia T, Singh A, Saxena PN, Kesavchandran C, Mudiam MKR (2015) Application of nano-sized multi-template imprinted polymer for simultaneous extraction of polycyclic aromatic hydrocarbon metabolites in urine samples followed by ultra-high performance liquid chromatographic analysis. J Chromatogr B 985:110–118

    Article  Google Scholar 

  • Chung F-C, Wu R-J, Cheng F-C (2014) Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B 190:1–7

    Article  Google Scholar 

  • Cincinelli A, Martellini T, Amore A, Dei L, Marrazza G, Carretti E, Belosi F, Ravegnani F, Leva P (2016) Measurement of volatile organic compounds (VOCs) in libraries and archives in Florence (Italy). Sci Total Environ 572:333–339

    Article  Google Scholar 

  • Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 1–12. doi:10.1155/2012/751075.

  • Devi NL, Yadav IC, Shihua Q, Dan Y, Zhang G, Raha P (2016) Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 144:493–502

    Article  Google Scholar 

  • Dewulf J, Langenhove HV (2009) Hydrocarbons in the atmosphere. In: Sabljic A (ed) Environmental and echological chemistry, vol II. Unesco, France, pp 1–23

    Google Scholar 

  • Drabova L, Pulkrabova J, Kalachova K, Tomaniova M, Kocourek V, Hajslova J (2012) Rapid determination of polycyclic aromatic hydrocarbons (PAHs) in tea using two-dimensional gas chromatography coupled with time of flight mass spectrometry. Talanta 100:207–216

    Article  Google Scholar 

  • Drabova L, Tomaniova M, Kalachova K, Kocourek V, Hajslova J, Pulkrabova J (2013) Application of solid phase extraction and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry for fast analysis of polycyclic aromatic hydrocarbons in vegetable oils. Food Control 33:489–497

    Article  Google Scholar 

  • Du J, Jing C (2011) Preparation of Thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification. J Phys Chem C 115:17829–17835

    Article  Google Scholar 

  • Du J, Xu J, Sun Z, Jing C (2016) Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons. Anal Chim Acta 915:81–89

    Article  Google Scholar 

  • Fernández-Amado M, Prieto-Blanco MC, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2016) A novel and cost-effective method for the determination of fifteen polycyclic aromatic hydrocarbons in low volume rainwater samples. Talanta 155:175–184

    Article  Google Scholar 

  • Gu H-X, Hu K, Li D-W, Long Y-T (2016) SERS detection of polycyclic aromatic hydrocarbons using a bare gold nanoparticles coupled film system. Analyst 141:4359–4365

    Article  Google Scholar 

  • Guerrini L, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2009) Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized ag nanoparticles by surface-enhanced Raman scattering. Anal Chem 81:953–960

    Article  Google Scholar 

  • Guicherit R (1997) Traffic as a source of volatile hydrocarbons in ambient air. Sci Total Environ 205:201–213

    Article  Google Scholar 

  • Guo J, Zhang J, Zhu M, Ju D, Xu H, Cao B (2014) High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens Actuators B 199:339–345

    Article  Google Scholar 

  • Guo M, Song W, Wang T, Li Y, Wang X, Du X (2015) Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta 144:998–1006

    Article  Google Scholar 

  • Han Y, Ren L, Xu K, Yang F, Li Y, Cheng T, Kang X, Xu C, Shi Q (2015) Supercritical fluid extraction with carbon nanotubes as a solid collection trap for the analysis of polycyclic aromatic hydrocarbons and their derivatives. J Chromatogr A 1395:1–6

    Article  Google Scholar 

  • Hou X, Guo Y, Liang X, Wang X, Wang L, Wang L, Liu X (2016) Bis(trifluoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap. Talanta 153:392–400

    Article  Google Scholar 

  • Hsueh T-J, Hsu C-L, Chang S-J, Chen I-C (2007) Laterally grown ZnO nanowire ethanol gas sensors. Sens Actuators B 126:473–477

    Article  Google Scholar 

  • Hu P, Du G, Zhou W, Cui J, Lin J, Liu H, Liu D, Wang J, Chen S (2010) Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering. ACS Appl Mater Interfaces 2:3263–3269

    Article  Google Scholar 

  • Huang J, Yu K, Gu C, Zhai M, Wu Y, Yang M, Liu J (2010) Preparation of porous flower-shaped SnO2 nanostructures and their gas-sensing property. Sens Actuators B 147:467–474

    Article  Google Scholar 

  • Huang K, Kong L, Yuan F, Xie C (2013) In situ diffuse reflectance infrared Fourier transform spectroscopy study of formaldehyde adsorption and reactions on nano γ-Fe2O3 films. Appl Surf Sci 270:405–410

    Article  Google Scholar 

  • Inyawilert K, Wisitsora-at A, Tuantranont A, Singjai P, Phanichphant S, Liewhiran C (2014) Ultra-rapid VOCs sensors based on sparked-In2O3 sensing films. Sens Actuators B 192:745–754

    Article  Google Scholar 

  • Jenkins BM, Jones AD, Turn SQ, Williams RB (1996) Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environ Sci Technol 30:2462–2469

    Article  Google Scholar 

  • Jin W, Yan S, An L, Chen W, Yang S, Zhao C, Dai Y (2015) Enhancement of ethanol gas sensing response based on ordered V2O5 nanowire microyarns. Sens Actuators B 206:284–290

    Article  Google Scholar 

  • Jones CC, Chughtai AR, Murugaverl B, Smith DM (2004) Effects of air/fuel combustion ratio on the polycyclic aromatic hydrocarbon content of carbonaceous soots from selected fuels. Carbon 42:2471–2484

    Article  Google Scholar 

  • Kaneti YV, Moriceau J, Liu M, Yuan Y, Zakaria Q, Jiang Z, Yu A (2015) Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocomposites with high gas-sensing performance. Sens Actuators B 209:889–897

    Article  Google Scholar 

  • Karmaoui M, Leonardi SG, Latino M, Tobaldi DM, Donato N, Pullar RC, Seabra MP, Labrincha JA, Neri G (2016) Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications. Sens Actuators B 230:697–705

    Article  Google Scholar 

  • Khandekar MS, Tarwal NL, Mullad IS, Suryavanshi SS (2014) Nanocrystalline Ce doped CoFe2O4 as an acetone gas sensor. Ceram Int 40:447–452

    Article  Google Scholar 

  • Kılınç K, Şennik E, Öztürk ZZ (2011) Fabrication of TiO2 nanotubes by anodization of Ti thin films for VOC sensing. Thin Solid Films 520:953–958

    Article  Google Scholar 

  • Kim S, Park S, Park S, Lee C (2015) Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens Actuators B 209:180–185

    Article  Google Scholar 

  • Kim K-H, Szulejko J, Kwon E, Deep A (2016) A critical review on the diverse preconcentration procedures on bag samples in the quantitation of volatile organic compounds from cigarette smoke and other combustion samples. Trends Anal Chem 85:65–74

    Article  Google Scholar 

  • Kohler M, Kunniger T (2003) Emission of polycyclic aromatic hydrocarbon (PAH) from creosoted railroad ties and their relevance for life cycle assessment. Holz Roh Werkst 61:117–124

    Google Scholar 

  • Kristensen P, Eilertsen E, Einarsdóttir E, Haugen A, Skaug V, Ovrebo S (1995) Fertility in mice after prenatal exposure to benzo[a]pyrene and inorganic lead. Environ Health Perspect 103:588–590

    Article  Google Scholar 

  • Krupadam RJ, Bhagat B, Khan MS (2010) Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction. Anal Bioanal Chem 397:3097–3106

    Article  Google Scholar 

  • Leyton P, Sanchez-Cortes S, Garcia-Ramos JV, Domingo C, Campos-Vallette M, Saitz C, Clavijo RE (2004) Selective molecular recognition of polycyclic aromatic hydrocarbons (PAHs) on Calix[4]arene-functionalized Ag nanoparticles by surface-enhanced Raman scattering. J Phys Chem B 108:17484–17490

    Article  Google Scholar 

  • Liang R, Chen L, Qin W (2015) Potentiometric detection of chemical vapours using molecularly imprinted polymers as receptors. Sci Rep 5:12462

    Article  Google Scholar 

  • Liu X, Zhang J, Guo X, Wang S, Wu S (2012) Core–shell α–Fe2O3@SnO2/Au hybrid structures and their enhanced gas sensing properties. RSC Adv 2:1650–1655

    Article  Google Scholar 

  • Lou Z, Deng J, Wang L, Wang L, Fei T, Zhang T (2013) Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sens Actuators B 176:323–329

    Article  Google Scholar 

  • MacAskill ND, Walker TR, Oakes K, Walsh M (2016) Forensic assessment of polycyclic aromatic hydrocarbons at the former Sydney Tar Ponds and surrounding environment using fingerprint techniques. Environ Pollut 212:166–177

    Article  Google Scholar 

  • Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65:449–456

    Article  Google Scholar 

  • Mauri-Aucejo A, Amorós P, Moragues A, Guillem C, Belenguer-Sapiña C (2016) Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples. Talanta 156-157:95–103

    Article  Google Scholar 

  • Mehdinia A, Khojasteh E, Kayyal TB, Jabbari A (2014) Magnetic solid phase extraction using gold immobilized magnetic mesoporous silica nanoparticles coupled with dispersive liquid–liquid microextraction for determination of polycyclic aromatic hydrocarbons. J Chromatogr A 1364:20–27

    Article  Google Scholar 

  • Mehdinia A, Khodaee N, Jabbari A (2015) Fabrication of graphene/Fe3O4@polythiophene nanocomposite and its application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Anal Chim Acta 868:1–9

    Article  Google Scholar 

  • Mei L, Deng J, Yin X, Zhang M, Li Q, Zhang E, Xu Z, Chen L, Wang T (2012) Ultrasensitive ethanol sensor based on 3D aloe-like SnO2. Sens Actuators B 166-167:7–11

    Article  Google Scholar 

  • Menezes HC, de Barcelos SMR, Macedo DFD, Purceno AD, Machado BF, Teixeira APC, Lago RM, Serp P, Cardeal ZL (2015) Magnetic N-doped carbon nanotubes: a versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Anal Chim Acta 873:51–56

    Article  Google Scholar 

  • Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi SG, Neri G (2015) Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials 5:737–749

    Article  Google Scholar 

  • Mirzaei A, Leonardi SG, Neri G (2016) Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int 42:15119–15142

    Article  Google Scholar 

  • Mollahosseini A, Rokue M, Mojtahedi MM, Toghroli M, Kamankesh M, Motaharian A (2016) Mechanical stir bar sorptive extraction followed by gas chromatography as a new method for determining polycyclic aromatic hydrocarbons in water samples. Microchem J 126:431–437

    Article  Google Scholar 

  • Mori M, Itagaki Y, Iseda J, Sadaoka Y, Ueda T, Mitsuhashi H, Nakatani M (2014) Influence of VOC structures on sensing property of SmFeO3 semiconductive gas sensor. Sens Actuators B 202:873–877

    Article  Google Scholar 

  • Mowry JB, Spyker DA, Cantilena LR, Bailey JE, Ford M (2013) 2012 annual report of the American association of poison control centers’ National Poison Data System (NPDS): 30th annual report. Clin Toxicol 51:949–1229

    Article  Google Scholar 

  • Mukhtar NH, See HH (2016) Carbonaceous nanomaterials immobilised mixed matrix membrane microextraction for the determination of polycyclic aromatic hydrocarbons in sewage pond water samples. Anal Chim Acta 931:57–63

    Article  Google Scholar 

  • Ohura T, Kamiya Y, Ikemori F (2016) Local and seasonal variations in concentrations of chlorinated polycyclic aromatic hydrocarbons associated with particles in a Japanese megacity. J Hazard Mater 312:254–261

    Article  Google Scholar 

  • Olah GA, Molnar A (2003) Hydrocarbon chemistry, 2nd edn. Wiley, New Jersey

    Book  Google Scholar 

  • Patra S, Roy E, Madhuri R, Sharma PK (2015) Imprinted ZnO nanostructure-based electrochemical sensing of calcitonin: a clinical marker for medullary thyroid carcinoma. Anal Chim Acta 853:271–284

    Article  Google Scholar 

  • Patra S, Roy E, Madhuri R, Sharma PK (2016) A technique comes to life for security of life: the food contaminant sensors. In: Grumezescu AM (ed) NanoBioSensors, vol 8. Academic Press, Natherland, pp 713–772

    Google Scholar 

  • Paturel L, Saber A, Combet E, Joumard R (1996) Analysis of PAH emissions from passenger cars by high resolution Shpol’skii spectrofluorimetry. Polycycl Aromat Compd 9:331–339

    Article  Google Scholar 

  • Petrov AA (1987) Petroleum hydrocarbons. Springer, New York

    Book  Google Scholar 

  • Pisupati SV, Wasco RS, Scaroni AW (2000) An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems. J Hazard Mater 74:91–107

    Article  Google Scholar 

  • Qu L-L, Li Y-T, Li D-W, Xue J-Q, Fossey JS, Long Y-T (2013) Humic acids-based one-step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons. Analyst 138:1523–1528

    Article  Google Scholar 

  • Qu F, Wang Y, Liu J, Wen S, Chen Y, Ruan S (2014) Fe3O4–NiO core–shell composites: hydrothermal synthesis and toluene sensing properties. Mater Lett 132:167–170

    Article  Google Scholar 

  • Ramgir NS, Kaur M, Sharma PK, Datta N, Kailasaganapathi S, Bhattacharya S, Debnath AK, Aswal DK, Gupta SK (2013) Ethanol sensing properties of pure and Au modified ZnO nanowires. Sens Actuators B 187:313–318

    Article  Google Scholar 

  • Ravindra K, Mittal AK, Van Grieken R (2001) Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: a review. Rev Environ Health 16:169–189

    Article  Google Scholar 

  • Ravindra K, Sokhi R, Grieken RV (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  Google Scholar 

  • Rocío-Bautista P, Pino V, Ayala JH, Pasáz J, Ruiz-Pérez C, Afonso AN (2016) A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions. J Chromatogr A 1436:42–50

    Article  Google Scholar 

  • Santhaveesuk T, Wongratanaphisan D, Choopun S (2010) Enhancement of sensor response by TiO2 mixing and Au coating on ZnO tetrapod sensor. Sens Actuators B 147:502–507

    Article  Google Scholar 

  • Schauer JJ, Cass GR (2000) Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environ Sci Technol 34:1821–1832

    Article  Google Scholar 

  • Seo M-H, Yuasa M, Kida T, Huh J-S, Yamazoe N, Shimanoe K (2011) Microstructure control of TiO2 nanotubular films for improved VOC sensing. Sens Actuators B 154:251–256

    Article  Google Scholar 

  • Sheng P, Wu S, Bao L, Wang X, Chen Z, Cai Q (2012) Surface enhanced Raman scattering detecting polycyclic aromatic hydrocarbons with gold nanoparticle-modified TiO2 nanotube arrays. New J Chem 36:2501–2505

    Article  Google Scholar 

  • Shi R, Yan L, Xu T, Liu D, Zhu Y, Zhou J (2015) Graphene oxide bound silica for solid-phase extraction of 14 polycyclic aromatic hydrocarbons in mainstream cigarette smoke. J Chromatogr A 1375:1–7

    Article  Google Scholar 

  • Shi Y, Wu H, Wang C, Guo X, Du J, Du L (2016) Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC–FLD. Food Chem 199:75–80

    Article  Google Scholar 

  • Simanzhenkov V, Idem R (2003) Crude oil chemistry. CRC Press, Taylor and Francis Group, New York

    Book  Google Scholar 

  • Singh O, Singh RC (2012) Enhancement in ethanol sensing response by surface activation of ZnO with SnO2. Mater Res Bull 47:557–561

    Article  Google Scholar 

  • Smil V (2015) Natural gas: fuel for the 21st century. Wiley, New Jersey

    Google Scholar 

  • Song X, Li J, Xu S, Ying R, Ma J, Liao C, Liu D, Yu J, Chen L (2012) Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry. Talanta 99:75–82

    Article  Google Scholar 

  • Speight JG (2011) Handbook of industrial hydrocarbon processes. Elsevier, Natherland

    Google Scholar 

  • Suman S, Sinha A, Tarafdar A (2016) Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci Total Environ 545-546:353–360

    Article  Google Scholar 

  • Sun P, Zhou X, Wang C, Shimanoe K, Lu G, Yamazoe N (2014) Hollow SnO2/α-Fe2O3 spheres with a double-shell structure for gas sensors. J Mater Chem A 2:1302–1308

    Article  Google Scholar 

  • Tan W, Yu Q, Ruan X, Huang X (2015a) Design of SnO2-based highly sensitive ethanol gas sensor based on quasi molecular-cluster imprinting mechanism. Sens Actuators B 212:47–54

    Article  Google Scholar 

  • Tan W, Ruan X, Yu Q, Yu Z, Huang X (2015b) Fabrication of a SnO2-based acetone gas sensor enhanced by molecular imprinting. Sensors 15:352–364

    Article  Google Scholar 

  • Taniguchi S, Colabuono FI, Dias PS, Oliveira R, Fisner M, Turra A, Izar GM, Abessa DMS, Saha M, Hosoda J, Yamashita R, Takada H, Lourenço RA, Magalhães CA, Bícego MC, Montone RC (2016) Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil. Mar Pollut Bull 106:87–94

    Article  Google Scholar 

  • Tiu BDB, Krupadam RJ, Advincula RC (2016) Pyrene-imprinted polythiophene sensors for detection of polycyclic aromatic hydrocarbons. Sens Actuators B 228:693–701

    Article  Google Scholar 

  • Tormoehlen LM, Tekulve KJ, Nañagas KA (2014) Hydrocarbon toxicity: a review. Clin Toxicol 52:479–489

    Article  Google Scholar 

  • Uchiyama S, Hayashida H, Izu R, Inaba Y, Nakagome H, Kunugita N (2015) Determination of nicotine, tar, volatile organic compounds and carbonyls in mainstream cigarette smoke using a glass filter and a sorbent cartridge followed by the two-phase/one-pot elution method with carbon disulfide and methanol. J Chromatogr A 1426:48–55

    Article  Google Scholar 

  • Uddin ASMI, Chung G-S (2014) Synthesis of highly dispersed ZnO nanoparticles on graphene surface and their acetylene sensing properties. Sens Actuators B 205:338–344

    Article  Google Scholar 

  • US EPA (Environmental Protection Agency) (2008) Polycyclic aromatic hydrocarbons (PAHs)-EPA fact sheet. National Center for Environmental Assessment, Office of Research and Development, Washington, DC

    Google Scholar 

  • Vaishnav VS, Patel SG, Panchal JN (2015) Development of indium tin oxide thin film toluene sensor. Sens Actuators B 210:165–172

    Article  Google Scholar 

  • Vinci RM, Jacxsens L, Meulenaer BD, Deconink E, Matsiko E, Lachat C, de Schaetzen T, Canfyn M, Overmeire IV, Kolsteren P, Loco JV (2015) Occurrence of volatile organic compounds in foods from the Belgian market and dietary exposure assessment. Food Control 52:1–8

    Article  Google Scholar 

  • Wang J, Liu L, Cong S-Y, Qi J-Q, Xu B-K (2008) An enrichment method to detect low concentration formaldehyde. Sens Actuators B 134:1010–1015

    Article  Google Scholar 

  • Wang H, Qu Y, Chen H, Lin Z, Dai K (2014) Highly selective n-butanol gas sensor based on mesoporous SnO2 prepared with hydrothermal treatment. Sens Actuators B 201:153–159

    Article  Google Scholar 

  • Wang M, Cui S, Yang X, Bi W (2015a) Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples. Talanta 132:922–928

    Article  Google Scholar 

  • Wang H, Zhao X, Meng W, Wang P, Wu F, Tang Z, Han X, Giesy JP (2015b) Cetyltrimethylammonium bromide-coated Fe3O4 magnetic nanoparticles for analysis of 15 trace polycyclic aromatic hydrocarbons in aquatic environments by ultraperformance, liquid chromatography with fluorescence detection. Anal Chem 87:7667–7675

    Article  Google Scholar 

  • Wang X, Hao W, Zhang H, Pan Y, Kang Y, Zhang X, Zou M, Tong P, Du Y (2015c) Analysis of polycyclic aromatic hydrocarbons in water with gold nanoparticles decorated hydrophobic porous polymer as surface-enhanced Raman spectroscopy substrate. Spectrochim Acta 139:214–221

    Article  Google Scholar 

  • Wang X, Wang Y, Qin Y, Ding L, Chen Y, Xie F (2015d) Sensitive and selective determination of polycyclic aromatic hydrocarbons in mainstream cigarette smoke using a graphene-coated solid phase microextraction fiber prior to GC/MS. Talanta 140:102–108

    Article  Google Scholar 

  • Wang Y, Lin Y, Jiang D, Li F, Li C, Zhu L, Wen S, Ruan S (2015e) Special nanostructure control of ethanol sensing characteristics based on Au@In2O3 sensor with good selectivity and rapid response. RSC Adv 5:9884–9890

    Article  Google Scholar 

  • Wells PG, McCallum GP, Lam KC, Henderson JT, Ondovcik SL (2010) Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits. Birth Defects Res C Embryo Today 90:103–109

    Article  Google Scholar 

  • Wing MR, Bada JL (1992) The origin of polycyclic aromatic hydrocarbons in meteorites. Orig Life Evol Biosph 21:375–383

    Article  Google Scholar 

  • Wu R-J, Lin D-J, Yu M-R, Chen MH, Lai H-F (2013) Ag@SnO2 core–shell material for use in fast-response ethanol sensor at room operating temperature. Sens Actuators B 178:185–191

    Article  Google Scholar 

  • Xiangfeng C, Dongli J, Yu G, Chenmou Z (2006) Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method. Sens Actuators B 120:177–181

    Article  Google Scholar 

  • Xie Y, Wang X, Han X, Xue X, Ji W, Qi Z, Liu J, Zhao B, Ozaki Y (2010) Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Analyst 135:1389–1394

    Article  Google Scholar 

  • Xie Y, Wang X, Han X, Song W, Ruan W, Liu J, Zhao B, Ozaki Y (2011) Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs. J Raman Spectrosc 42:945–950

    Article  Google Scholar 

  • Xing R, Xu L, Song J, Zhou C, Li Q, Liu D, Song HW (2015) Preparation and gas sensing properties of In2O3/Au nanorods for detection of volatile organic compounds in exhaled breath. Sci Rep 5:10717

    Article  Google Scholar 

  • Xu X, Fan H, Liu Y, Wang L, Zhang T (2011) Au-loaded In2O3 nanofibers-based ethanol micro gas sensor with low power consumption. Sens Actuators B 160:713–719

    Article  Google Scholar 

  • Xu J, Du J, Jing C, Zhang Y, Cui J (2014) Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect. ACS Appl Mater Interfaces 6:6891–6897

    Article  Google Scholar 

  • Xu J, Szyszkowicz M, Jovic B, Cakmak S, Austin CC, Zhu J (2016a) Estimation of indoor and outdoor ratios of selected volatile organic compounds in Canada. Atmos Environ 141:523–531

    Article  Google Scholar 

  • Xu P, Tao B, Ye Z, Zhao H, Ren Y, Zhang T, Huang Y, Chen J (2016b) Polycyclic aromatic hydrocarbon concentrations, compositions, sources, and associated carcinogenic risks to humans in farmland soils and riverine sediments from Guiyu, China. J Environ Sci 48:102–111

    Article  Google Scholar 

  • Xue S-W, Tang M-Q, Xu L, Shi Z-G (2015) Magnetic nanoparticles with hydrophobicity and hydrophilicity for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1411:9–16

    Article  Google Scholar 

  • Yang D-H, Shin MJ, Kim M, Kim Y-D, Kim H, Shin JS (2016) Molecularly imprinted titania microbeads for extraction of the metabolite 1-hydroxypyrene from urine prior to its determination by HPLC. Microchim Acta 183:1601–1609

    Article  Google Scholar 

  • Zhang J, Liu X, Wang L, Yang T, Guo X, Wu S, Wang S, Zhang S (2011) Au-functionalized hematite hybrid nanospindles: general synthesis, gas sensing and catalytic properties. J Phys Chem C 115:5352–5357

    Article  Google Scholar 

  • Zhang J, Liu X, Wu S, Cao B, Zheng S (2012) One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sens Actuators B 169:61–66

    Article  Google Scholar 

  • Zhang S, Ren F, Wu W, Zhou J, Xiao X, Sun L, Liu Y, Jiang C (2013) Controllable synthesis of recyclable core–shell γ-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. Phys Chem Chem Phys 15:8228–8236

    Article  Google Scholar 

  • Zhang S, Yao W, Ying J, Zhao H (2016a) Polydopamine-reinforced magnetization of zeolitic imidazolate framework ZIF-7 for magnetic solid-phased extraction of polycyclic aromatic hydrocarbons from the air-water environment. J Chromatogr A 1452:18–26

    Article  Google Scholar 

  • Zhang Y, Wu D, Yan X, Guan Y (2016b) Rapid solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples by a coated through-pore sintered titanium disk. Talanta 154:400–408

    Article  Google Scholar 

  • Zhao H, Jin J, Tian W, Li R, Yu Z, Song W, Cong Q, Zhao B, Ozaki Y (2015) Three-dimensional superhydrophobic surface enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments using an oil-water separation system. J Mater Chem A 3:4330–4337

    Article  Google Scholar 

  • Zheng W, Lu X, Wang W, Li Z, Zhang H, Wang Y, Wang Z, Wang C (2009) A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sens Actuators B 142:61–65

    Article  Google Scholar 

  • Zheng H-B, Ding J, Zheng S-J, Zhu G-T, Yuan B-F, Feng Y-Q (2016) Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples. Talanta 148:46–53

    Article  Google Scholar 

  • Zhu Z, Kao C-T, Wu R-J (2014) A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl Surf Sci 320:348–355

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to DST, BRNS, and ISM for sponsoring the research projects to Dr. Rashmi Madhuri (Ref. No.: SERB/F/2798/2016-17; SB/FT/CS-155/2012; FRS/43/2013-2014/AC; 34/14/21/2014-BRNS) and Dr. Prashant K. Sharma (Ref. No.: SR/FTP/PS-157/2011; FRS/34/2012-2013/APH; 34/14/21/2014-BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Madhuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Patra, S., Madhuri, R., Sharma, P.K. (2018). Role of Nanomaterials as an Emerging Trend Towards the Detection of Winged Contaminants. In: Saleh, T. (eds) Nanotechnology in Oil and Gas Industries. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-60630-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60630-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60629-3

  • Online ISBN: 978-3-319-60630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics