Skip to main content

Mechanisms of Desulfurization by Nanomaterials

  • Chapter
  • First Online:
Nanotechnology in Oil and Gas Industries

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

A variety of materials are used as catalyst and adsorbent during the desulfurization of petroleum products, and nanomaterials also find its application in this field. In different desulfurization process, the behavior of nanomaterials towards desulfurization is different. In the case of hydrodesulfurization process, the catalyst used are CoMo or NiMo sulfides supported on various supports. The catalysts bear anion vacancy or coordinatively unsaturated sites, where the sulfur compounds adsorb and react with hydrogen, to set free sulfur as H2S. The structure of the catalyst deeply influences its HDS activity; rim and edge model proposed suggests that the rim and edge sites of the catalysts sheets stacked together are more active for HDS of larger molecules. The activity of the catalysts enhances with reducing its crystalline structure. The catalysts used in oxidative desulfurization (ODS) include supported and unsupported metal oxides, polyoxmetalates, and transition metals as cations. During ODS reactions, the catalysts either act as an oxygen carrier, by converting into peroxo species or then enhance the dissociation of the oxidant to boost up the selective oxidation of the sulfur compounds. In adsorptive desulfurization, the adsorbent materials selectively retain the sulfur compounds by π-complexation or physical adsorption. In some cases, the adsorbents assist in cracking of sulfur compounds during the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad W (2015) Sulfur in petroleum: petroleum desulfurization techniques. In: Saleh TA (ed) Applying nanotechnology to the desulfurization process in petroleum engineering. IGI Global. Retrieved from https://books.google.com.pk/books?id=oGa2CgAAQBAJ

  • Al-Shahrani F, Xiao T, Llewellyn SA, Barri S, Jiang Z, Shi H et al (2007) Desulfurization of diesel via the H2O2 oxidation of aromatic sulfides to sulfones using a tungstate catalyst. Appl Catal B Environ 73(3–4):311–316. doi:10.1016/j.apcatb.2006.12.016

    Article  Google Scholar 

  • Arichi J, Eternot M, Louis B (2008) Synthesis of V-containing Keggin polyoxometalates: versatile catalysts for the synthesis of fine chemicals? Catal Today 138(1–2):117–122. doi:10.1016/j.cattod.2008.04.036

    Article  Google Scholar 

  • Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82(6):607–631. doi:10.1016/S0016-2361(02)00324-1

    Article  Google Scholar 

  • Bezverkhyy I, Safonova O, Afanasiev P, Bellat J-P (2009) Reaction between thiophene and Ni nanoparticles supported on SiO2 or ZnO: in situ synchrotron X-ray diffraction study. J Phys Chem C 113(39):17064–17069

    Article  Google Scholar 

  • Bonville Jr, L. J., DeGeorge, C. L., Foley, P. F., Garow, J., Lesieur, R. R., Preston Jr, J. L., & Szydlowski, D. F. (2000). Method for desulfurizing a fuel for use in a fuel cell power plant: Google patents.

    Google Scholar 

  • Brevoord E, Gerritsen LA, Plantenga FL (2000) Paper presented at the the European refinery technology conference, 13–15 Nov 2000, Rome, Italy

    Google Scholar 

  • Briand LE, Baronetti GT, Thomas HJ (2003) The state of the art on Wells–Dawson heteropoly-compounds: a review of their properties and applications. Appl Catal A Gen 256(1):37–50

    Article  Google Scholar 

  • Brieva GB, Campos-Martin JM, Al-Zahrani SM, Fierro JLG (2010) Removal of refractory organic sulphur compounds in fossil fuels using MOF sorbents. Glob NEST J 12:296–304

    Google Scholar 

  • Caero LC, Hernández E, Pedraza F, Murrieta F (2005) Oxidative desulfurization of synthetic diesel using supported catalysts: part I. Study of the operation conditions with a vanadium oxide based catalyst. Catal Today 107–108(0):564–569. doi:10.1016/j.cattod.2005.07.017

    Article  Google Scholar 

  • Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG (2010) Oxidative processes of desulfurization of liquid fuels. J Chem Technol Biotechnol 85(7):879–890. doi:10.1002/jctb.2371

    Article  Google Scholar 

  • Chang J, Wang A, Liu J, Li X, Hu Y (2010) Oxidation of dibenzothiophene with cumene hydroperoxide on MoO3/SiO2 modified with alkaline earth metals. Catal Today 149(1–2):122–126. doi:10.1016/j.cattod.2009.04.026

    Article  Google Scholar 

  • Chen L, Guo S, Zhao D (2006) Oxidation of thiophenes over silica gel in hydrogen peroxide/formic acid system. Chin J Chem Eng 14(6):835–838

    Article  Google Scholar 

  • Chen LJ, Guo SH, Zhao DS (2007) Oxidative desulfurization of simulated gasoline over metal oxide-loaded molecular sieve. Chin J Chem Eng 15(4):520–523

    Article  Google Scholar 

  • Chen J, Zhang B, Miao G, Men J (2016) New SiO2–NiO aerogel sorbents for desulfurization by π-complexation: influence of molar ratio of Si/Ni. Ind Eng Chem Res 55(17):5036–5042. doi:10.1021/acs.iecr.6b00211

    Article  Google Scholar 

  • Chica A, Corma A, Dómine ME (2006a) Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. J Catal 242(2):299–308. doi:10.1016/j.jcat.2006.06.013

    Article  Google Scholar 

  • Chica A, Gatti G, Moden B, Marchese L, Iglesia E (2006b) Selective catalytic oxidation of organosulfur compounds with tert-butyl hydroperoxide. Chem Eur J 12(7):1960–1967. doi:10.1002/chem.200500858

    Article  Google Scholar 

  • Collins FM, Lucy AR, Sharp C (1997) Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. J Mol Catal A Chem 117(1–3):397–403. doi:10.1016/s1381-1169(96)00251-8

    Article  Google Scholar 

  • Conference EOR & Exhibition (2000) Conference proceedings, Berlin, Germany, 29th & 30th June, WEFA

    Google Scholar 

  • Daage M, Chianelli R (1994) Structure-function relations in molybdenum sulfide catalysts: the “rim-edge” model. J Catal 149(2):414–427

    Article  Google Scholar 

  • Dai Y, Qi Y, Zhao D, Zhang H (2008) An oxidative desulfurization method using ultrasound/Fenton’s reagent for obtaining low and/or ultra-low sulfur diesel fuel. Fuel Process Technol 89(10):927–932. doi:10.1016/j.fuproc.2008.03.009

    Article  Google Scholar 

  • de Souza WF, Guimarães IR, Guerreiro MC, Oliveira LCA (2009) Catalytic oxidation of sulfur and nitrogen compounds from diesel fuel. Appl Catal A Gen 360(2):205–209. doi:10.1016/j.apcata.2009.03.023

    Article  Google Scholar 

  • Deshpande A, Bassi A, Prakash A (2004) Ultrasound-assisted, base-catalyzed oxidation of 4,6-dimethyldibenzothiophene in a biphasic diesel−acetonitrile system. Energy Fuel 19(1):28–34. doi:10.1021/ef0340965

    Article  Google Scholar 

  • Dooley KM, Liu D, Madrid AM, Knopf FC (2013) Oxidative desulfurization of diesel with oxygen: reaction pathways on supported metal and metal oxide catalysts. Appl Catal A Gen 468:143–149

    Article  Google Scholar 

  • Fan J, Wang G, Sun Y, Xu C, Zhou H, Zhou G, Gao J (2010) Research on reactive adsorption desulfurization over Ni/ZnO− SiO2− Al2O3 adsorbent in a fixed-fluidized bed reactor. Ind Eng Chem Res 49(18):8450–8460

    Article  Google Scholar 

  • Fukunaga T, Katsuno H, Matsumoto H, Takahashi O, Akai Y (2003) Development of kerosene fuel processing system for PEFC. Catal Today 84(3):197–200

    Article  Google Scholar 

  • Furimsky E (1996) Spent refinery catalysts: environment, safety and utilization. Catal Today 30(4):223–286. doi:10.1016/0920-5861(96)00094-6

    Article  Google Scholar 

  • Gao J, Wang S, Jiang Z, Lu H, Yang Y, Jing F, Li C (2006) Deep desulfurization from fuel oil via selective oxidation using an amphiphilic peroxotungsten catalyst assembled in emulsion droplets. J Mol Catal A Chem 258(1–2):261–266. doi:10.1016/j.molcata.2006.05.058

    Article  Google Scholar 

  • Gaofei Z, Fengli Y, Wang R (2009) Research advances in oxidative desulphurization technologies for the production of low sulfur fuel oils. Pet Coal 51(3):196–207

    Google Scholar 

  • García-Gutiérrez JL, Fuentes GA, Hernández-Terán ME, Murrieta F, Navarrete J, Jiménez-Cruz F (2006) Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3. Appl Catal A Gen 305(1):15–20. doi:10.1016/j.apcata.2006.01.027

    Article  Google Scholar 

  • García-Gutiérrez JL, Fuentes GA, Hernández-Terán ME, García P, Murrieta-Guevara F, Jiménez-Cruz F (2008) Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2 system: the effect of system parameters on catalytic activity. Appl Catal A Gen 334(1–2):366–373. doi:10.1016/j.apcata.2007.10.024

    Article  Google Scholar 

  • García-Gutiérrez JL, Laredo GC, García-Gutiérrez P, Jiménez-Cruz F (2014) Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide. Fuel 138:118–125

    Article  Google Scholar 

  • Gates BC, Topsøe H (1997) Reactivities in deep catalytic hydrodesulfurization: challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. Polyhedron 16(18):3213–3217. doi:10.1016/S0277-5387(97)00074-0

    Article  Google Scholar 

  • González-García O, Cedeño-Caero L (2009) V-Mo based catalysts for oxidative desulfurization of diesel fuel. Catal Today 148(1–2):42–48. doi:10.1016/j.cattod.2009.03.010

    Article  Google Scholar 

  • González-García O, Cedeño-Caero L (2010) V-Mo based catalysts for ods of diesel fuel. Part II. Catalytic performance and stability after redox cycles. Catal Today 150(3):237–243

    Article  Google Scholar 

  • Guo W, Wang C, Lin P, Lu X (2011) Oxidative desulfurization of diesel with TBHP/isobutyl aldehyde/air oxidation system. Appl Energy 88(1):175–179. doi:10.1016/j.apenergy.2010.08.003

    Article  Google Scholar 

  • Gyanesh PK, Engelbert RD, Cass BW (2000) US Patents 6056871. U. Patents

    Google Scholar 

  • Haji S, Erkey C (2003) Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications. Ind Eng Chem Res 42(26):6933–6937

    Article  Google Scholar 

  • Hao L, Benxian S, Zhou X (2005) An Improved desulfurization process based on H2O2/formic acid oxidation system followed by liquid-liquid extraction. Part 1. Coker gas oil feedstocks. Pet Sci Technol 23(7-8):991–999. doi:10.1081/lft-200034498

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2002) Desulfurization of liquid fuels by adsorption via π complexation with Cu(I)−Y and Ag−Y zeolites. Ind Eng Chem Res 42(1):123–129. doi:10.1021/ie020728j

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2003a) Desulfurization of commercial liquid fuels by selective adsorption via π-complexation with Cu(I)−Y zeolite. Ind Eng Chem Res 42(13):3103–3110. doi:10.1021/ie0301132

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2003b) Desulfurization of liquid fuels by adsorption via π complexation with Cu(I)−Y and Ag−Y zeolites. Ind Eng Chem Res 42(1):123–129. doi:10.1021/ie020728j

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2004a) Denitrogenation of transportation fuels by zeolites at ambient temperature and pressure. Angew Chem Int Ed 43(8):1004–1006. doi:10.1002/anie.200353162

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2004b) Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(I)−Y zeolites. J Am Chem Soc 126(4):992–993. doi:10.1021/ja039304m

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2004c) New sorbents for desulfurization of diesel fuels via π-complexation. AIChE J 50(4):791–801. doi:10.1002/aic.10074

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Stamatis SD, Yang RT, He AZ, Cannella W (2004) New sorbents for desulfurization of diesel fuels via π complexation: layered beds and regeneration. Ind Eng Chem Res 43(3):769–776. doi:10.1021/ie034108+

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Yang FH, Qi G, Yang RT (2005) Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. Appl Catal B Environ 56(1–2):111–126. doi:10.1016/j.apcatb.2004.06.023

    Article  Google Scholar 

  • Huang L, Wang G, Qin Z, Dong M, Du M, Ge H et al (2011) In situ XAS study on the mechanism of reactive adsorption desulfurization of oil product over Ni/ZnO. Appl Catal B Environ 106(1–2):26–38. doi:10.1016/j.apcatb.2011.05.001

    Google Scholar 

  • Imtiaz A, Waqas A, Muhammad I (2013) Desulfurization of liquid fuels using air-assisted performic acid oxidation and emulsion catalyst. Chin J Catal 34(10):1839–1847. doi:10.1016/S1872-2067(12)60668-8

    Article  Google Scholar 

  • Irvine RL, Benson BA, Varraveto DM (1999) IRVAD™ process—low cost breakthrough for low sulphur gasoline. Paper AM-99-42, paper presented at the NPRA 21–23 March 1999, Annual meeting, San Antonio, Texas

    Google Scholar 

  • Ishihara A, Wang D, Dumeignil F, Amano H, Qian EW, Kabe T (2005) Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process. Appl Catal A Gen 279(1–2):279–287. doi:10.1016/j.apcata.2004.10.037

    Article  Google Scholar 

  • Javadli R, de Klerk A (2011) Desulfurization of heavy oil–oxidative desulfurization (ODS) as potential upgrading pathway for oil sands derived bitumen. Energy Fuel 26(1):594–602. doi:10.1021/ef201448d

    Article  Google Scholar 

  • Javadli R, Klerk A (2012) Desulfurization of heavy oil. Appl Petrochem Res 1(1-4):3–19. doi:10.1007/s13203-012-0006-6

    Article  Google Scholar 

  • Jiang X, Li H, Zhu W, He L, Shu H, Lu J (2009) Deep desulfurization of fuels catalyzed by surfactant-type decatungstates using H2O2 as oxidant. Fuel 88(3):431–436. doi:10.1016/j.fuel.2008.11.010

    Article  Google Scholar 

  • Jiang Z, Lü H, Zhang Y, Li C (2011) Oxidative desulfurization of fuel oils. Chin J Catal 32(5):707–715. doi:10.1016/S1872-2067(10)60246-X

    Article  Google Scholar 

  • Joensen P, Frindt R, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21(4):457–461

    Article  Google Scholar 

  • Kim JH, Ma X, Zhou A, Song C (2006) Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism. Catal Today 111(1):74–83

    Article  Google Scholar 

  • Knudsen KG, Cooper BH, Topsoe H (1999) Catalyst and process technologies for ultra low sulfur diesel. Appl Catal A Gen 189(2):205–215. doi:10.1016/s0926-860x(99)00277-x

    Article  Google Scholar 

  • Komintarachat C, Trakarnpruk W (2006) Oxidative desulfurization using polyoxometalates. Ind Eng Chem Res 45(6):1853–1856. doi:10.1021/ie051199x

    Article  Google Scholar 

  • Kou J, Lu C, Sun W, Zhang L, Xu Z (2015) Facile fabrication of cuprous oxide-based adsorbents for deep desulfurization. ACS Sustain Chem Eng 3(12):3053–3061. doi:10.1021/acssuschemeng.5b01051

    Article  Google Scholar 

  • Kubota T, Miyamoto N, Yoshioka M, Okamoto Y (2014) Surface structure and sulfidation behavior of Co-Mo and Co-W sulfide catalysts for the hydrodesulfurization of dibenzothiophene. Appl Catal A Gen 480:10–16. doi:10.1016/j.apcata.2014.04.033

    Article  Google Scholar 

  • Larking I, Stomberg R (1972) Studies on peroxomolybdates. IX. The crystal structure of potassium diperoxoheptamolybdate (VI) octahydrate, K6Mo7O22 (O2) 2 8H2O. Acta Chem Scand 26:3708–3722

    Article  Google Scholar 

  • Lesieur, R. R., Teeling, C., Sangiovanni, J. J., Boedeker, L. R., Dardas, Z. A., Huang, H., et al (2002). Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant: Google patents.

    Google Scholar 

  • Li C, Jiang Z, Gao J, Yang Y, Wang S, Tian F et al (2004) Ultra-deep desulfurization of diesel: oxidation with a recoverable catalyst assembled in emulsion. Chem Eur J 10(9):2277–2280. doi:10.1002/chem.200305679

    Article  Google Scholar 

  • Li C, Gao J, Jiang Z, Wang S, Lu H, Yang Y, Jing F (2005) Selective oxidations on recoverable catalysts assembled in emulsions. Top Catal 35(1-2):169–175. doi:10.1007/s11244-005-3821-5

    Article  Google Scholar 

  • Lipsch J, Schuit G (1969) The CoO MoO3 Al2O3 catalyst: III. Catalytic properties. J Catal 15(2):179–189

    Article  Google Scholar 

  • Liu Z, Zhang L, Jiang J, Bian C, Zhang Z, Gao Z (2013) Advancement of hydro-desulfurization catalyst and discussion of its application in coal tar. Adv Chem Eng Sci 3(1)

    Google Scholar 

  • Long DL, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev 36(1):105–121

    Article  Google Scholar 

  • Long DL, Tsunashima R, Cronin L (2010) Polyoxometalates: building blocks for functional nanoscale systems. Angew Chem Int Ed 49(10):1736–1758

    Article  Google Scholar 

  • Lü H, Gao J, Jiang Z, Jing F, Yang Y, Wang G, Li C (2006) Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets. J Catal 239(2):369–375. doi:10.1016/j.jcat.2006.01.025

    Article  Google Scholar 

  • Lu H, Gao J, Jiang Z, Yang Y, Song B, Li C (2007) Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis. Chem Commun 0(2):150–152

    Article  Google Scholar 

  • Lu Y, Wang Y, Gao L, Chen J, Mao J, Xue Q et al (2008) Aerobic oxidative desulfurization: a promising approach for sulfur removal from fuels. ChemSus Chem 1(4):302–306. doi:10.1002/cssc.200700144

    Article  Google Scholar 

  • Lu H, Zhang Y, Jiang Z, Li C (2010) Aerobic oxidative desulfurization of benzothiophene, dibenzothiophene and 4,6-dimethyldibenzothiophene using an Anderson-type catalyst [(C18H37)2N(CH3)2]5[IMo6O24]. Green Chem 12(11):1954–1958

    Article  Google Scholar 

  • Ma X, Sakanishi K, Mochida I (1994) Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Ind Eng Chem Res 33(2):218–222. doi:10.1021/ie00026a007

    Article  Google Scholar 

  • Ma X, Sun L, Song C (2003) Adsorptive desulfurization of diesel fuel over a metal sulfide-based adsorbent. Prepr Pap-Am Chem Soc Div Fuel Chem 48(2):522

    Google Scholar 

  • Ma X, Sprague M, Song C (2005a) Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications. Ind Eng Chem Res 44(15):5768–5775

    Article  Google Scholar 

  • Ma X, Velu S, Kim JH, Song C (2005b) Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Appl Catal B Environ 56(1–2):137–147. doi:10.1016/j.apcatb.2004.08.013

    Article  Google Scholar 

  • Ma X, Zhou A, Song C (2007) A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catal Today 123(1–4):276–284. doi:10.1016/j.cattod.2007.02.036

    Article  Google Scholar 

  • Maciuca A-L, Ciocan C-E, Dumitriu E, Fajula F, Hulea V (2008) V-, Mo- and W-containing layered double hydroxides as effective catalysts for mild oxidation of thioethers and thiophenes with H2O2. Catal Today 138(1–2):33–37. doi:10.1016/j.cattod.2008.04.031

    Article  Google Scholar 

  • Mayo S, Plantenga F, Leliveld B, Miyauchi A (2001) Paper presented at the national petrochemical & refiners association (NPRA) annual meeting, AM-01-09, New Orleans, 18–20 March, 2001

    Google Scholar 

  • McKinley SG, Angelici RJ (2003) Deep desulfurization by selective adsorption of dibenzothiophenes on Ag+/SBA-15 and Ag+/SiO2. Chem Commun 20:2620–2621

    Article  Google Scholar 

  • Meng X, Huang H, Weng H, Shi L (2012) Ni/ZnO-based adsorbents supported on Al2O3, SiO2, TiO2, ZrO2: a comparison for desulfurization of model gasoline by reactive adsorption. Bull Kor Chem Soc 33(10):3213–3217

    Article  Google Scholar 

  • Mikhail S, Zaki T, Khalil L (2002) Desulfurization by an economically adsorption technique. Appl Catal A Gen 227(1–2):265–278. doi:10.1016/S0926-860X(01)00937-1

    Article  Google Scholar 

  • Murata S, Murata K, Kidena K, Nomura M (2003) A novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes. Energy Fuel 18(1):116–121. doi:10.1021/ef034001z

    Article  Google Scholar 

  • Neumann R, Khenkin AM, Dahan M (1995) Hydroxylation of alkanes with molecular oxygen catalyzed by a new ruthenium-substituted polyoxometalate, [WZnRu 2III (OH)(H2O)(ZnW9O34) 2]11−. Angew Chem Int Ed Eng 34(15):1587–1589

    Article  Google Scholar 

  • Olguin E, Vrinat M, Cedeño L, Ramirez J, Borque M, López-Agudo A (1997) The use of TiO2—Al2O3 binary oxides as supports for Mo-based catalysts in hydrodesulfurization of thiophene and dibenzothiophene. Appl Catal A Gen 165(1–2):1–13. doi:10.1016/S0926-860X(97)00184-1

    Article  Google Scholar 

  • Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuel 14(6):1232–1239. doi:10.1021/ef000096i

    Article  Google Scholar 

  • Owens P, Amberg C (1961) Thiophene desulfurization by a microreactor technique. Adv Chem Ser 33:182

    Article  Google Scholar 

  • Pettersson L, Andersson I, Taube F, Toth I, Hashimoto M, Howarth O (2003) 17O NMR study of aqueous peroxoisopolymolybdate equilibria at lower peroxide/Mo ratios. Dalton Trans 1:146–152

    Article  Google Scholar 

  • Putaj P (2012) Applications of polyoxometalates in heterogenous catalysis. Université Claude Bernard-Lyon I, Villeurbanne

    Google Scholar 

  • Rakesh Kumar D, Srivastava VC (2012) Studies on adsorptive desulfurization by activated carbon. Clean–Soil Air Water 40(5):545–550

    Article  Google Scholar 

  • Riad M, Mikhail S (2012) Oxidative desulfurization of light gas oil using zinc catalysts prepared via different techniques. Cat Sci Technol 2(7):1437–1446. doi:10.1039/C2CY20064C

    Article  Google Scholar 

  • Saleh TA (2015) Applying nanotechnology to the desulfurization process in petroleum engineering. IGI Global, Hershey

    Google Scholar 

  • Salem ABSH (1994) Naphtha desulfurization by adsorption. Ind Eng Chem Res 33(2):336–340. doi:10.1021/ie00026a025

    Article  Google Scholar 

  • Salem ABSH, Hamid HS (1997) Removal of sulfur compounds from naphtha solutions using solid adsorbents. Chem Eng Technol 20(5):342–347. doi:10.1002/ceat.270200511

    Article  Google Scholar 

  • Sampanthar JT, Xiao H, Dou J, Nah TY, Rong X, Kwan WP (2006) A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel. Appl Catal B Environ 63(1–2):85–93. doi:10.1016/j.apcatb.2005.09.007

    Article  Google Scholar 

  • Sano Y, Choi K-H, Korai Y, Mochida I (2004a) Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization. Appl Catal B Environ 49(4):219–225

    Article  Google Scholar 

  • Sano Y, Choi K-H, Korai Y, Mochida I (2004b) Selection and further activation of activated carbons for removal of nitrogen species in gas oil as a pretreatment for its deep hydrodesulfurization. Energy Fuel 18(3):644–651

    Article  Google Scholar 

  • Segawa K, Takahashi K, Satoh S (2000) Development of new catalysts for deep hydrodesulfurization of gas oil. Catal Today 63(2–4):123–131. doi:10.1016/S0920-5861(00)00452-1

    Article  Google Scholar 

  • Shafi R, Hutchings GJ (2000) Hydrodesulfurization of hindered dibenzothiophenes: an overview. Catal Today 59(3–4):423–442. doi:10.1016/S0920-5861(00)00308-4

    Article  Google Scholar 

  • Song C, Ma X (2003) New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl Catal B Environ 41(1):207–238. doi:10.1016/s0926-3373(02)00212-6

    Article  Google Scholar 

  • Sundararaman R, Ma X, Song C (2010) Oxidative desulfurization of jet and diesel fuels using hydroperoxide generated in situ by catalytic air oxidation. Ind Eng Chem Res 49(12):5561–5568. doi:10.1021/ie901812r

    Article  Google Scholar 

  • Takahashi A, Yang FH, Yang RT (2002) New sorbents for desulfurization by π-complexation: thiophene/benzene adsorption. Ind Eng Chem Res 41(10):2487–2496

    Article  Google Scholar 

  • Tang X-l, Meng X, Shi L (2011) Desulfurization of model gasoline on modified bentonite. Ind Eng Chem Res 50(12):7527–7533. doi:10.1021/ie200475x

    Article  Google Scholar 

  • Tawara K, Nishimura T, Iwanami H (2000) Ultra-deep hydrodesulfurization of kerosene for fuel cell system.(Part 2): Regeneration of sulfur-poisoned nickel catalyst in hydrogen and finding of auto-regenerative nickel catalyst. Sekiyu Gakkai Shi 43(2):114–120

    Article  Google Scholar 

  • Tawara K, Nishimura T, Iwanami H, Nishimoto T, Hasuike T (2001) Ultra-deep hydrodesulfurization of kerosene for fuel cell system.(Part 3) Development and evaluation of Ni/ZnO catalyst. Sekiyu Gakkai Shi 44(1):43–51

    Article  Google Scholar 

  • Te M, Fairbridge C, Ring Z (2001) Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems. Appl Catal A Gen 219(1–2):267–280. doi:10.1016/S0926-860X(01)00699-8

    Article  Google Scholar 

  • Thian TC (2008) Effects of catalyst morphology on hydrotreating reactions. J Eng Sci Technol 3(2):117–123

    Google Scholar 

  • Tian F, Li C, Jiang Z, Weicheng WU (2005) Adsorption of sulphur containing compounds from FCC gasoline on cerium-exchanged Y zeolite. Chin J Catal 26(9):734–736

    Google Scholar 

  • Triantafyllidis KS, Deliyanni EA (2014) Desulfurization of diesel fuels: adsorption of 4,6-DMDBT on different origin and surface chemistry nanoporous activated carbons. Chem Eng J 236:406–414. doi:10.1016/j.cej.2013.09.099

    Article  Google Scholar 

  • Trysberg L, Stomberg R (1981) Studies on peroxomolybdates. 10. The crystal-structures of (NH4) 4 [MO3O7 (O2) 4]. 2H2O, K5 [MO7O21 (O2) 2 (OH)]. 6H2O AND (NH4) 4 [MO8O24 (O2) 2 (H2O) 2]. 4H2O-A Preliminary-Report (vol. 35, pp. 823–825): Munksgaard Int Publ Ltd 35 Norre Sogade, Po Box 2148, DK-1016 Copenhagen, Denmark

    Google Scholar 

  • Turk B, Gupta R (2001) RTI’s trend process for deepdesulfurization of naphtha. Paper presented at the abstracts of papers of the American Chemical Society

    Google Scholar 

  • Tuxen A, Kibsgaard J, Gøbel H, Lægsgaard E, Topsøe H, Lauritsen JV, Besenbacher F (2010) Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano 4(8):4677–4682

    Article  Google Scholar 

  • Ullah R, Bai P, Wu P, Zhang Z, Zhong Z, Etim U et al (2016) Comparison of the reactive adsorption desulfurization performance of Ni/ZnO–Al2O3 adsorbents prepared by different methods. Energy Fuel 30(4):2874–2881

    Article  Google Scholar 

  • Vasudevan PT, Fierro JLG (1996) A review of deep hydrodesulfurization catalysis. Catal Rev 38(2):161–188. doi:10.1080/01614949608006457

    Article  Google Scholar 

  • Velu S, Ma X, Song C (2003) Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents. Ind Eng Chem Res 42(21):5293–5304. doi:10.1021/ie020995p

    Article  Google Scholar 

  • Venkateshwar Rao T, Sain B, Kafola S, Nautiyal BR, Sharma YK, Nanoti SM, Garg MO (2007) Oxidative desulfurization of HDS diesel using the aldehyde/molecular oxygen oxidation system. Energy Fuel 21(6):3420–3424. doi:10.1021/ef700245g

    Article  Google Scholar 

  • Vergara-Méndez BZ, García-Gómez ÁA, Poisot M, Ramírez-Galicia G (2011) Theoretical study of peroxo-and diperoxomolybdate formation as catalysts in the oxidative desulfurization of diesel. Top Catal 54(8-9):527–534

    Article  Google Scholar 

  • Wang D, Qian EW, Amano H, Okata K, Ishihara A, Kabe T (2003) Oxidative desulfurization of fuel oil: Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Appl Catal A Gen 253(1):91–99. doi:10.1016/S0926-860X(03)00528-3

    Article  Google Scholar 

  • Wang R, Zhang G, Zhao H (2010) Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil. Catal Today 149(1–2):117–121. doi:10.1016/j.cattod.2009.03.011

    Article  Google Scholar 

  • Watanabe S, Ma X, Song C (2004) Selective sulfur removal from liquid hydrocarbons over regenerable CeO2-TiO2 adsorbents for fuel cell applications. ACS Div Fuel Chem 49(2):511–513

    Google Scholar 

  • Wen Y, Wang G, Wang Q, Xu C, Gao J (2012) Regeneration characteristics and kinetics of Ni/ZnO–SiO2–Al2O3 adsorbent for reactive adsorption desulfurization. Ind Eng Chem Res 51(10):3939–3950. doi:10.1021/ie202730w

    Article  Google Scholar 

  • WS (2001) Paper presented at the national petrochemical & refiners association (NPRA) annual meeting, AM-01-29, 18–20 March, 2001, New Orleans

    Google Scholar 

  • Xue-Min Y, Jia-Heng L, Dan L, Yang-Chun W, Guo L-P (2007) Oxidative desulfurization of diesel oil using mesoporous phosphotungstic acid/SiO2 as catalyst. J Chin Chem Soc 54:911–916

    Article  Google Scholar 

  • Yan XM, Lei JH, Liu D, Wu YC, Guo LP (2007) Oxidative desulfurization of diesel oil using mesoporous phosphotungstic Acid/SiO2 as catalyst. J Chin Chem Soc 54(4):911–916

    Article  Google Scholar 

  • Yang RT, Hernández-Maldonado AJ, Yang FH (2003) Desulfurization of transportation fuels with zeolites under ambient conditions. Science 301(5629):79–81. doi:10.1126/science.1085088

    Article  Google Scholar 

  • Yang L, Li J, Yuan X, Shen J, Qi Y (2007) One step non-hydrodesulfurization of fuel oil: catalyzed oxidation adsorption desulfurization over HPWA-SBA-15. J Mol Catal A Chem 262(1–2):114–118. doi:10.1016/j.molcata.2006.08.058

    Article  Google Scholar 

  • Yazu K, Yamamoto Y, Furuya T, Miki K, Ukegawa K (2001) Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil. Energy Fuel 15(6):1535–1536. doi:10.1021/ef0101412

    Article  Google Scholar 

  • Yazu K, Furuya T, Miki K, Ukegawa K (2003) Tungstophosphoric acid-catalyzed oxidative desulfurization of light oil with hydrogen peroxide in a light oil/acetic acid biphasic system. Chem Lett 32(10):920–921

    Article  Google Scholar 

  • Yazu K, Makino M, Ukegawa K (2004) Oxidative desulfurization of diesel oil with hydrogen peroxide in the presence of acid catalyst in diesel oil/acetic acid biphasic system. Chem Lett 33(10):1306–1307

    Article  Google Scholar 

  • Yazu K, Sato S, Yoshikazu S (2007) Tungstophosphoric acid–catalyzed oxidative desulfuriazation of naphtha with hydrogen peroxide in naphtha/acetic acid biphasic system. J Jpn Pet Inst 50(6):329–334

    Article  Google Scholar 

  • Yu G, Lu S, Chen H, Zhu Z (2005) Diesel fuel desulfurization with hydrogen peroxide promoted by formic acid and catalyzed by activated carbon. Carbon 43(11):2285–2294. doi:10.1016/j.carbon.2005.04.008

    Article  Google Scholar 

  • Zhang YW, Shen J, Yuan XD (2005) Desulfurization by catalytic oxidation and adsorption over Ti3(PW12O)4. Pet Process Petrochem 36(3):20–24

    Google Scholar 

  • Zhang Y, Lü H, Wang L, Zhang Y, Liu P, Han H et al (2010) The oxidation of benzothiophene using the Keggin-type lacunary polytungstophosphate as catalysts in emulsion. J Mol Catal A Chem 332(1–2):59–64. doi:10.1016/j.molcata.2010.08.021

    Article  Google Scholar 

  • Zhang M, Zhu W, Xun S, Li H, Gu Q, Zhao Z, Wang Q (2013) Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chem Eng J 220:328–336. doi:10.1016/j.cej.2012.11.138

    Article  Google Scholar 

  • Zhou A, Ma X, Song C (2006a) Liquid-phase adsorption of multi-ring thiophenic sulfur compounds on carbon materials with different surface properties. J Phys Chem B 110(10):4699–4707. doi:10.1021/jp0550210

    Article  Google Scholar 

  • Zhou X, Zhao C, Yang J, Zhang S (2006b) Catalytic oxidation of dibenzothiophene using cyclohexanone peroxide. Energy Fuel 21(1):7–10. doi:10.1021/ef060441p

    Article  Google Scholar 

  • Zhou X, Gai H, Wang J, Zhang S, Yang J, Zhang S (2009a) Oxidation of benzothiophenes using tert-amyl hydroperoxide. Chin J Chem Eng 17(2):189–194. doi:10.1016/S1004-9541(08)60192-5

    Article  Google Scholar 

  • Zhou X, Li J, Wang X, Jin K, Ma W (2009b) Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine. Fuel Process Technol 90(2):317–323. doi:10.1016/j.fuproc.2008.09.002

    Article  Google Scholar 

  • Zhu W, Huang W, Li H, Zhang M, Jiang W, Chen G, Han C (2011) Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels. Fuel Process Technol 92(10):1842–1848. doi:10.1016/j.fuproc.2011.04.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqas Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ahmad, W., Ahmad, I. (2018). Mechanisms of Desulfurization by Nanomaterials. In: Saleh, T. (eds) Nanotechnology in Oil and Gas Industries. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-60630-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60630-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60629-3

  • Online ISBN: 978-3-319-60630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics