Skip to main content

Selective Sulfur Removal from Liquid Fuels Using Nanostructured Adsorbents

  • Chapter
  • First Online:
Nanotechnology in Oil and Gas Industries

Abstract

In recent years, there has been an increasing pressure to develop strategies to reduce the level of sulfur in transportation fuels due to stringent environmental regulations. Currently, hydrodesulfurization (HDS) is the most mature (pre-FCC) technology to remove sulfur from gasoline and diesel. However, conventional HDS can hardly produce ultra-low sulfur fuels while maintaining important fuel requirements (i.e., oxygen content, overall aromatic content, olefin content for gasoline, and cetane number for diesel). As a consequence, improvement of existing HDS processes and development of new desulfurization technologies is needed. In this regard, selective adsorption removal of sulfur (SARS) is a promising emerging approach for ultra-deep desulfurization of refinery streams by means of solid adsorbents. Contrary to HDS, SARS is usually carried out at low temperatures and pressures with minimal hydrogen consumption, preventing olefin hydrogenation and thus maintaining the properties of the fuels. This chapter presents a general overview of SARS. Emphasis is given to the use of nanostructured materials as sulfur adsorbents. Section 5.1 introduces the chapter presenting a general description of HDS, SARS and other emerging desulfurization technologies. Section 5.2 describes the two main groups of SARS (adsorption desulfurization and reactive adsorption desulfurization). Subsequently, the three main mechanisms for sulfur adsorption (π-complexation, direct sulfur–adsorption site interactions, and bulk incorporation in reactive adsorption desulfurization) are reviewed. Section 5.3 gives an overview of relevant literature concerning the use of promising groups of nanostructured adsorbents for SARS including zeolites, MOFs, mesoporous silicas, and carbon-nanostructured adsorbents. Finally, Sect. 5.4 gives some concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anbia M, Karami S (2015) Desulfurization of gasoline using novel mesoporous carbon adsorbents. J Nanostruct Chem 5(1):131–137

    Article  Google Scholar 

  • Arias M, Laurenti D, Geantet C, Vrinat M, Hideyuki I, Yoshimura Y (2008) Gasoline desulfurization by catalytic alkylation over silica-supported heteropolyacids: from model reaction to real feed conversion. Catal Today 130(1):190–194

    Article  Google Scholar 

  • Babich I, Moulijn J (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82(6):607–631

    Article  Google Scholar 

  • Bakhtiari G, Abdouss M, Bazmi M, Royaee SJ (2016) Optimization of sulfur adsorption over Ag-zeolite nanoadsorbent by experimental design method. Int J Environ Sci Technol 13(3):803–812

    Article  Google Scholar 

  • Bhandari VM, Hyun Ko C, Geun Park J, Han S-S, Cho S-H, Kim J-N (2006) Desulfurization of diesel using ion-exchanged zeolites. Chem Eng Sci 61(8):2599–2608

    Article  Google Scholar 

  • Blanco-Brieva G, Campos-Martin JM, Al-Zahrani SM, Fierro JLG (2013) Efficient solvent regeneration of Basolite C300 used in the liquid-phase adsorption of dibenzothiophene. Fuel 113:216–220

    Article  Google Scholar 

  • Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev 44(19):6804–6849

    Article  Google Scholar 

  • Cychosz KA, Wong-Foy AG, Matzger AJ (2008) Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds. J Am Chem Soc 130(22):6938–6939

    Article  Google Scholar 

  • Dastanian M, Seyedeyn-Azad F (2010) Desulfurization of gasoline over nanoporous nickel-loaded Y-type zeolite at ambient conditions. Ind Eng Chem Res 49(22):11254–11259

    Article  Google Scholar 

  • Fallah RN, Azizian S, Dwivedi AD, Sillanpää M (2015) Adsorptive desulfurization using different passivated carbon nanoparticles by PEG-200. Fuel Process Technol 130:214–223

    Article  Google Scholar 

  • Farzin N, Miran B (2015) Efficient desulfurization of gasoline fuel using ionic liquid extraction as a complementary process to adsorptive desulfurization. Pet Sci 12(2):330–339

    Article  Google Scholar 

  • Gutierrez C, Contreras L, Mancilla J, Elguezabal A (2015) Unsupported and supported non-promoted ruthenium sulfide catalyst with high catalytic activity for hydrocarbon hydrotreatments and its method. US 8987165 B2

    Google Scholar 

  • Han X, Li H, Huang H, Zhao L, Cao L, Wang Y, Gao J, Xu C (2016) Effect of olefin and aromatics on thiophene adsorption desulfurization over modified NiY zeolites by metal Pd. RSC Adv 6(78):75006–75013

    Article  Google Scholar 

  • Hauser JL, Tran DT, Conley ET, Saunders JM, Bustillo KC, Oliver SRJ (2016) Plasma treatment of silver impregnated mesoporous aluminosilicate nanoparticles for adsorptive desulfurization. Chem Mater 28(2):474–479

    Article  Google Scholar 

  • Hernández-Maldonado AJ, Yang FH, Qi G, Yang RT (2005) Desulfurization of transportation fuels by Ï€-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. Appl Catal B Environ 56(1–2):111–126

    Article  Google Scholar 

  • Irvine RL (1998) Process for desulfurizing gasoline and hydrocarbon feedstocks. US 5,730,860

    Google Scholar 

  • Javadli R, de Klerk A (2012) Desulfurization of heavy oil. Appl Petrochem Res 1(1):3–19

    Article  Google Scholar 

  • Ju F, Liu C, Meng C, Gao S, Ling H (2015) Reactive adsorption desulfurization of hydrotreated diesel over a Ni/ZnO-Al2O3-SiO2 adsorbent. Energy Fuels 29(9):6057–6067

    Article  Google Scholar 

  • Khaled M (2015) Adsorption performance of multiwall carbon nanotubes and graphene oxide for removal of thiophene and dibenzothiophene from model diesel fuel. Res Chem Intermed 41(12):9817–9833

    Article  Google Scholar 

  • Khan NA, Jhung SH (2012) Remarkable adsorption capacity of CuCl2-loaded porous vanadium benzenedicarboxylate for benzothiophene. Angew Chem Int Ed 51(5):1198–1201

    Article  Google Scholar 

  • Khan NA, Yoon JW, Chang J-S, Jhung SH (2016) Enhanced adsorptive desulfurization with flexible metal-organic frameworks in the presence of diethyl ether and water. Chem Commun 52(56):8667–8670

    Article  Google Scholar 

  • Kim H, Lee C, Kim M, Oh J, Song S, Jang S, Yoon C, Han J, Yoon S, Nam S, Choi D, Shul Y, Ham H (2016) Preparation of CoMo/Al2O3, CoMo/CeO2, CoMo/TiO2 catalysts using ultrasonic spray pyrolysis for the hydro-desulfurization of 4, 6-dimethyldibenzothiophene for fuel cell applications. Int J Hydrogen Energy 41(41):18846–18857

    Article  Google Scholar 

  • Kunhao L, Breaver M, Speronello B, Garcia-Martinez J (2015) Surfactant-templated mesostructuring of zeolites: from discovery to commercialization. In: Garcia-Martinez J, Kunhao L (eds) Mesoporous zeolites. Wiley-VCH, Cham, pp 321–347

    Google Scholar 

  • Lee KX, Valla JA (2017) Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels. Appl Catal B Environ 201:359–369

    Article  Google Scholar 

  • Ma X, Sun L, Song C (2002) A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catal Today 77(1–2):107–116

    Article  Google Scholar 

  • Maes M, Trekels M, Boulhout M, Schouteden S, Vermoortele F, Alaerts L, Heurtaux D, Seo Y-K, Hwang YK, Chang J-S, Beurroies I, Denoyel R, Temst K, Vantomme A, Horcajada P, Serre C, De Vos DE (2011) Selective removal of N-heterocyclic aromatic contaminants from fuels by Lewis acidic metal–organic frameworks. Angew Chem Int Ed 50(18):4210–4214

    Article  Google Scholar 

  • Menzel R, Iruretagoyena D, Wang Y, Bawaked SM, Mokhtar M, Al-Thabaiti SA, Basahel SN, Shaffer M (2016) Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels. Fuel 181:531–536

    Article  Google Scholar 

  • Nazal MK, Khaled M, Atieh MA, Aljundi IH, Oweimreen GA, Abulkibash AM (2015) The nature and kinetics of the adsorption of dibenzothiophene in model diesel fuel on carbonaceous materials loaded with aluminum oxide particles. Arab J Chem. doi:10.1016/j.arabjc.2015.12.003

  • Ng FTT, Rahman A, Ohasi T, Jiang M (2005) A study of the adsorption of thiophenic sulfur compounds using flow calorimetry. Appl Catal B Environ 56(1–2):127–136

    Article  Google Scholar 

  • Park JG, Ko CH, Yi KB, Park J-H, Han S-S, Cho S-H, Kim J-N (2008) Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica. Appl Catal B Environ 81(3–4):244–250

    Article  Google Scholar 

  • Peralta D, Chaplais G, Simon-Masseron A, Barthelet K, Pirngruber GD (2012) Metal–organic framework materials for desulfurization by adsorption. Energy Fuels 26(8):4953–4960

    Article  Google Scholar 

  • Rodrigues AKO, Ramos JET, Cavalcante CL Jr, Rodríguez-Castellón E, Azevedo DCS (2014) Pd-loaded mesoporous silica as a robust adsorbent in adsorption/desorption desulfurization cycles. Fuel 126:96–103

    Article  Google Scholar 

  • Salem ABSH (1994) Naphtha desulfurization by adsorption. Ind Eng Chem Res 33(2):336–340

    Article  Google Scholar 

  • Sánchez-Delgado RA (1994) Breaking CS bonds with transition metal complexes. A review of molecular approaches to the study of the mechanisms of the hydrodesulfurization reaction. J Mol Catal 86(1):287–307

    Article  Google Scholar 

  • Seeberger A, Jess A (2010) Desulfurization of diesel oil by selective oxidation and extraction of sulfur compounds by ionic liquids-a contribution to a competitive process design. Green Chem 12(4):602–608

    Article  Google Scholar 

  • Shi F, Hammoud M, Thompson LT (2011) Selective adsorption of dibenzothiophene by functionalized metal organic framework sorbents. Appl Catal B Environ 103(3–4):261–265

    Article  Google Scholar 

  • Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86(1–4):211–263

    Article  Google Scholar 

  • Song H, Cui X-H, Song H-L, Gao H-J, Li F (2014a) Characteristic and adsorption desulfurization performance of Ag–Ce bimetal ion-exchanged Y zeolite. Ind Eng Chem Res 53(37):14552–14557

    Article  Google Scholar 

  • Song H, Chang Y, Wan X, Dai M, Song H, Jin Z (2014b) Equilibrium, kinetic, and thermodynamic studies on adsorptive desulfurization onto CuICeIVY zeolite. Ind Eng Chem Res 53(14):5701–5708

    Article  Google Scholar 

  • Takahashi A, Yang FH, Yang RT (2002) New sorbents for desulfurization by Ï€-complexation: thiophene/benzene adsorption. Ind Eng Chem Res 41(10):2487–2496

    Article  Google Scholar 

  • Tawara K, Nishimura T, Iwanami H, Nishimoto T, Hasuike T (2001) New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations. Ind Eng Chem Res 40(10):2367–2370

    Article  Google Scholar 

  • Thaligari S, Srivastava V, Prasad B (2016) Adsorptive desulfurization by zinc-impregnated activated carbon: characterization, kinetics, isotherms, and thermodynamic modeling. Clean Technol Environ Policy 18(4):1021–1030

    Article  Google Scholar 

  • Topsøe H, Knudsen KG, Byskov LS, Nørskov JK, Clausen BS (1999) Advances in deep desulfurization. In: Hideshi H, Kiyoshi O (eds) Studies in surface science and catalysis, vol 121. Elsevier, Amsterdam, pp 13–22

    Google Scholar 

  • Ullah R, Bai P, Wu P, Zhang Z, Zhong Z, Etim UJ, Subhan F, Yan Z (2016) Comparison of the reactive adsorption desulfurization performance of Ni/ZnO-Al2O3. Adsorbents prepared by different methods. Energy Fuels 30(4):2874–2881

    Article  Google Scholar 

  • Van de Voorde B, Munn AS, Guillou N, Millange F, De Vos DE, Walton RI (2013) Adsorption of N/S heterocycles in the flexible metal-organic framework MIL-53(FeIII) studied by in situ energy dispersive X-ray diffraction. Phys Chem Chem Phys 15(22):8606–8615

    Article  Google Scholar 

  • Velu S, Ma X, Song C, Namazian M, Sethuraman S, Venkataraman G (2005) Desulfurization of JP-8 jet fuel by selective adsorption over a Ni-based adsorbent for micro solid oxide fuel cells. Energy Fuels 19(3):1116–1125

    Article  Google Scholar 

  • Wang Y, Yang RT (2007) Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration. Langmuir 23(7):3825–3831

    Article  Google Scholar 

  • Weitkamp J (2000) Zeolites and catalysis. Solid State Ion 131(1–2):175–188

    Article  Google Scholar 

  • Xiong J, Zhu W, Li H, Ding W, Chao Y, Wu P, Xun S, Zhang M, Li H (2015) Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chem 17(3):1647–1656

    Article  Google Scholar 

  • Xue M, Chitrakar R, Sakane K, Hirotsu T, Ooi K, Yoshimura Y, Feng Q, Sumida N (2005) Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium. J Colloid Interface Sci 285(2):487–492

    Article  Google Scholar 

  • Yang RT, Takahashi A, Yang FH (2001) New sorbents for desulfurization of liquid fuels by Ï€-complexation. Ind Eng Chem Res 40(26):6236–6239

    Article  Google Scholar 

  • Zhang Y, Wang R (2017) Nanocarbon materials for oxidative-adsorptive desulfurization using air oxygen under mild conditions. Diam Relat Mater 73:161–168

    Article  Google Scholar 

  • Zhang ZY, Shi TB, Jia CZ, Ji WJ, Chen Y, He MY (2008) Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites. Appl Catal B Environ 82(1–2):1–10

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Robert Menzel and Milo Shaffer for discussions and to John Blamey for proofreading. This work was supported by EPSRC (UK) under grants EP/K014749/1 and EP/N010531/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Iruretagoyena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Iruretagoyena, D., Montesano, R. (2018). Selective Sulfur Removal from Liquid Fuels Using Nanostructured Adsorbents. In: Saleh, T. (eds) Nanotechnology in Oil and Gas Industries. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-60630-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60630-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60629-3

  • Online ISBN: 978-3-319-60630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics