Skip to main content

Nanotechnology Applications in Petroleum Refining

  • Chapter
  • First Online:

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

Nanotechnology has successfully gained applications in many areas of life, thereby seen as the modern way of creating products, which results in high efficiency of use. In the petroleum processing industries, this revolution is no exception. The efficiency of a number of conversion processes improves upon application of materials with the nanometer scale dimension, which is caused by improvements and developments of better material properties as the particle size decreases. In this chapter, the applications of nanotechnology through nanocatalysis in petro-refining processes are highlighted. This is exemplified by discussing the applications of nanotechnology in several typical petroleum refining processes, including catalytic cracking, oxidative dehydrogenation of alkanes, and desulfurization. Other processes for the production of clean fuels are also briefly reviewed. The key benefits of “nano-tech” application in catalysis are based on the exposure of a large surface area for reaction, thereby reducing the tendencies to adverse and side reactions. The desire for an improved catalyst with high activity, low deactivation, and low coke formation to meet the growing demand for chemicals and fuels necessitates the increasing exploitation of nanoparticles as catalysts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Askari S, Halladj R, Sohrabi M (2012) Methanol conversion to light olefins over sonochemically prepared SAPO-34 nanocatalyst. Micropor Mesopor Mater 163:334–342

    Article  Google Scholar 

  • Askari S, Alipour SM, Halladj R, Farahani MHDA (2013) Effects of ultrasound on the synthesis of zeolites: a review. J Porous Mater 20:285–302

    Article  Google Scholar 

  • Baghbanian SM, Farhang M, Vahdat SM, Tajbakhsh M (2015) Hydrogenation of arenes, nitroarenes, and alkenes catalyzed by rhodium nanoparticles supported on natural nanozeolite clinoptilolite. J Mol Catal A Chem 407:128–136

    Article  Google Scholar 

  • Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    Article  Google Scholar 

  • Besenbacher F, Chorkendorff I, Clausen B, Hammer B, Molenbroek A, Nørskov JK, Stensgaard I (1998) Design of a surface alloy catalyst for steam reforming. Science 279:1913–1915

    Article  Google Scholar 

  • Bezemer GL, Bitter JH, Kuipers HP, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964

    Article  Google Scholar 

  • Busca G (2014) Metal oxides as acid-base catalytic materials. Elsevier, Amsterdam

    Book  Google Scholar 

  • Cheng K, Zhang L, Kang J, Peng X, Zhang Q, Wang Y (2015) Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles. Chem Eur J 21:1928–1937

    Article  Google Scholar 

  • Corma A, Lopez-Nieto J, Paredes N, Perez M, Shen Y, Cao H, Suib S (1992) Oxidative dehydrogenation of propane over supported-vanadium oxide catalysts. Stud Surf Sci Catal 72:213–220

    Article  Google Scholar 

  • Covarrubias C, Quijada R, Rojas R (2009) Synthesis of nanosized ZSM-2 zeolite with potential acid catalytic properties. Micropor Mesopor Mater 117:118–125

    Article  Google Scholar 

  • Database of Zeolite Structures. http://www.iza-structure.org/databases/

  • Davis ME, García-Martínez J, Li K (2015) Mesoporous zeolites: preparation, characterization and applications. Wiley, Weinheim

    Google Scholar 

  • Farcasiu M, Degnan TF (1988) The role of external surface activity in the effectiveness of zeolites. Ind Eng Chem Res 27:45–47

    Article  Google Scholar 

  • Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335:835–838

    Article  Google Scholar 

  • Gao Y, Wu G, Ma F, Liu C, Jiang F, Wang Y, Wang A (2016) Modified seeding method for preparing hierarchical nanocrystalline ZSM-5 catalysts for methanol aromatisation. Micropor Mesopor Mater 226:251–259

    Article  Google Scholar 

  • Grunes J, Zhu J, Somorjai GA (2003) Catalysis and nanoscience. Chem Commun 9(18):2257–2260

    Article  Google Scholar 

  • Guo K, Gu M, Yu Z (2017) Carbon nanocatalysts for aquathermolysis of heavy crude oil: insights into thiophene hydrodesulfurization. Energy Technol. doi:10.1002/ente.201600522

  • Haruta M, Daté M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A Gen 222:427–437

    Article  Google Scholar 

  • Hauser JL, Tran DT, Conley ET, Saunders JM, Bustillo KC, Oliver SR (2016) Plasma treatment of silver impregnated mesoporous aluminosilicate nanoparticles for adsorptive desulfurization. Chem Mater 28:474–479

    Article  Google Scholar 

  • Hirota Y, Murata K, Miyamoto M, Egashira Y, Nishiyama N (2010) Light olefins synthesis from methanol and dimethylether over SAPO-34 nanocrystals. Catal Lett 140:22–26

    Article  Google Scholar 

  • Hu Y, Liu C, Zhang Y, Ren N, Tang Y (2009) Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size. Micropor Mesopor Mater 119:306–314

    Article  Google Scholar 

  • Inayat A, Knoke I, Spiecker E, Schwieger W (2012) Assemblies of mesoporous FAU-type zeolite nanosheets. Angew Chem Int Ed 51:1962–1965

    Article  Google Scholar 

  • Jacobsen CJ, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000a) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117

    Article  Google Scholar 

  • Jacobsen CJ, Madsen C, Janssens TV, Jakobsen HJ, Skibsted J (2000b) Zeolites by confined space synthesis—characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Micropor Mesopor Mater 39:393–401

    Article  Google Scholar 

  • Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M (2016) Selective conversion of syngas to light olefins. Science 351:1065–1068

    Article  Google Scholar 

  • Jo C, Jung J, Shin HS, Kim J, Ryoo R (2013) Capping with multivalent surfactants for zeolite nanocrystal synthesis. Angew Chem 125:10198–10201

    Article  Google Scholar 

  • Kamigaito O (1991) What can be improved by nanometer composites? J Jpn Soc Powder Powder Metall 38:315–321

    Article  Google Scholar 

  • Karakoulia SA, Triantafyllidis KS, Tsilomelekis G, Boghosian S, Lemonidou AA (2009) Propane oxidative dehydrogenation over vanadia catalysts supported on mesoporous silicas with varying pore structure and size. Catal Today 141:245–253

    Article  Google Scholar 

  • Khalil M, Lee RL, Liu N (2015) Hematite nanoparticles in aquathermolysis: a desulfurization study of thiophene. Fuel 145:214–220

    Article  Google Scholar 

  • Khodakov A, Yang J, Su S, Iglesia E, Bell AT (1998) Structure and properties of vanadium oxide-zirconia catalysts for propane oxidative dehydrogenation. J Catal 177:343–351

    Article  Google Scholar 

  • Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216

    Article  Google Scholar 

  • Konno H, Okamura T, Kawahara T, Nakasaka Y, Tago T, Masuda T (2012) Kinetics of n-hexane cracking over ZSM-5 zeolites—effect of crystal size on effectiveness factor and catalyst lifetime. Chem Eng J 207:490–496

    Article  Google Scholar 

  • Konno H, Tago T, Nakasaka Y, Ohnaka R, J-i N, Masuda T (2013) Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha. Micropor Mesopor Mater 175:25–33

    Article  Google Scholar 

  • Kore R, Srivastava R, Satpati B (2014) ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents. Chem Eur J 20:11511–11521

    Article  Google Scholar 

  • Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328:224–228

    Article  Google Scholar 

  • Li YH, Zhu YQ (2012) Research progress of unsupported nano catalyst. Adv Mater Res 550–553:284–291. Trans Tech Publ

    Google Scholar 

  • Li G, Jones CA, Grassian VH, Larsen SC (2005) Selective catalytic reduction of NO2 with urea in nanocrystalline NaY zeolite. J Catal 234:401–413

    Article  Google Scholar 

  • Lindsay S (2009) Introduction to nanoscience. Oxford University Press, New York

    Google Scholar 

  • López C, Corma A (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. ChemCatChem 4:751–752

    Article  Google Scholar 

  • Lv Y, Qian X, Tu B, Zhao D (2013) Generalized synthesis of core-shell structured nano-zeolite@ ordered mesoporous silica composites. Catal Today 204:2–7

    Article  Google Scholar 

  • McHale J, Auroux A, Perrotta A, Navrotsky A (1997) Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277:788–791

    Article  Google Scholar 

  • Mehlhorn D, Inayat A, Schwieger W, Valiullin R, Kärger J (2014) Probing mass transfer in mesoporous faujasite-type zeolite nanosheet assemblies. ChemPhysChem 15:1681–1686

    Article  Google Scholar 

  • Mintova S, Olson NH, Valtchev V, Bein T (1999) Mechanism of zeolite A nanocrystal growth from colloids at room temperature. Science 283:958–960

    Article  Google Scholar 

  • Mintova S, Grand J, Valtchev V (2016) Nanosized zeolites: Quo Vadis? C R Chim 19:183–191

    Article  Google Scholar 

  • Mohajeri A, Rashidi A, Jozani KJ, Khorami P, Amini B, Parviz D, Kalbasi M (2010) Hydrodesulphurization nanocatalyst, its use and a process for its production. U.S. Patent No. 20100167915

    Google Scholar 

  • Mohammed MI, Razak AAA, Shehab MA (2017) Synthesis of nanocatalyst for hydrodesulfurization of gasoil using laboratory hydrothermal rig. Arab J Sci Eng 42(4):1381–1387

    Article  Google Scholar 

  • Morales-Pacheco P, Domínguez J, Bucio L, Alvarez F, Sedran U, Falco M (2011) Synthesis of FAU (Y)-and MFI (ZSM5)-nanosized crystallites for catalytic cracking of 1, 3, 5-triisopropylbenzene. Catal Today 166:25–38

    Article  Google Scholar 

  • Ng E-P, Chateigner D, Bein T, Valtchev V, Mintova S (2012a) Capturing ultrasmall EMT zeolite from template-free systems. Science 335:70–73

    Article  Google Scholar 

  • Ng E-P, Goupil J-M, Al V, Fernandez C, Retoux R, Valtchev V, Mintova S (2012b) Nucleation and Crystal Growth Features of EMT-Type Zeolite Synthesized from an Organic-Template-Free System. Chem Mater 24:4758–4765

    Article  Google Scholar 

  • Pan Y, Ju M, Yao J, Zhang L, Xu N (2009) Preparation of uniform nano-sized zeolite A crystals in microstructured reactors using manipulated organic template-free synthesis solutions. Chem Commun 7233–7235. doi: 10.1039/b917949f

  • Park HJ, Jeon J-K, Kim JM, Lee HI, Yim J-H, Park J, Park Y-K (2008) Synthesis of nanoporous material from zeolite USY and catalytic application to bio-oil conversion. J Nanosci Nanotechnol 8:5439–5444

    Article  Google Scholar 

  • Peng X, Cheng K, Kang J, Gu B, Yu X, Zhang Q, Wang Y (2015) Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew Chem 127:4636–4639

    Article  Google Scholar 

  • Persson AE, Schoeman BJ, Sterte J, Otterstedt JE (1994) The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites 14:557–567

    Article  Google Scholar 

  • Rafiee E, Rezaei S (2016) Deep extractive desulfurization and denitrogenation of various model oils by H 3+nPMo12-nVnO40 supported on silica-encapsulated γ-Fe2O3 nanoparticles for industrial effluents applications. J Taiwan Inst Chem Eng 61:174–180

    Article  Google Scholar 

  • Rajagopalan K, Peters AW, Edwards GC (1986) Influence of zeolite particle size on selectivity during fluid catalytic cracking. Appl Catal 23:69–80

    Article  Google Scholar 

  • Rao C, Kulkarni G, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8:28–35

    Article  Google Scholar 

  • Rezvani MA, Shojaei AF, Zonoz FM (2014) Anatase titania–vanadium polyphosphomolybdate as an efficient and reusable nano catalyst for the desulphurization of gas oil. J Serb Chem Soc 79:1099–1110

    Article  Google Scholar 

  • Sakthivel A, Iida A, Komura K, Sugi Y, Chary KV (2009) Nanosized β-zeolites with tunable particle sizes: synthesis by the dry gel conversion (DGC) method in the presence of surfactants, characterization and catalytic properties. Micropor Mesopor Mater 119:322–330

    Article  Google Scholar 

  • Sartipi S, Alberts M, Santos VP, Nasalevich M, Gascon J, Kapteijn F (2014) Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer-Tropsch synthesis. ChemCatChem 6:142–151

    Article  Google Scholar 

  • Schlögl R, Abd Hamid SB (2004) Nanocatalysis: mature science revisited or something really new? Angew Chem Int Ed 43:1628–1637

    Article  Google Scholar 

  • Schmidt I, Madsen C, Jacobsen CJ (2000) Confined space synthesis. A novel route to nanosized zeolites. Inorg Chem 39:2279–2283

    Article  Google Scholar 

  • Schoeman B, Sterte J, Otterstedt J-E (1994) Colloidal zeolite suspensions. Zeolites 14:110–116

    Article  Google Scholar 

  • Serrano DP, van Grieken R, Melero JA, García A, Vargas C (2010) Nanocrystalline ZSM-5: a catalyst with high activity and selectivity for epoxide rearrangement reactions. J Mol Catal A Chem 318:68–74

    Article  Google Scholar 

  • Shroff MD, Kalakkad DS, Coulter KE, Kohler SD, Harrington MS, Jackson NB, Sault AG, Datye AK (1995) Activation of precipitated iron Fischer-Tropsch synthesis catalysts. J Catal 156:185–207

    Article  Google Scholar 

  • Steynberg A, Dry M (2004) Fischer-Tropsch technology. Elsevier, Amsterdam

    Google Scholar 

  • Sudhakar C (1998) Selective hydrodesulfurization of cracked naphtha using novel catalysts. U.S Patent No. 5770046

    Google Scholar 

  • Sun W, Wang L, Zhang X, Liu G (2015) Controllable synthesis of hierarchical beta nanozeolites from tailorable seeds. Micropor Mesopor Mater 201:219–227

    Article  Google Scholar 

  • Tang T, Zhang L, Fu W, Ma Y, Xu J, Jiang J, Fang G, Xiao F-S (2013) Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities. J Am Chem Soc 135:11437–11440

    Article  Google Scholar 

  • Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapol P (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–216

    Article  Google Scholar 

  • Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  Google Scholar 

  • Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760

    Article  Google Scholar 

  • Vuong G-T, Hoang V-T, Nguyen D-T, Do T-O (2010) Synthesis of nanozeolites and nanozeolite-based FCC catalysts, and their catalytic activity in gas oil cracking reaction. Appl Catal A Gen 382:231–239

    Article  Google Scholar 

  • Wachs IE, Weckhuysen BM (1997) Structure and reactivity of surface vanadium oxide species on oxide supports. Appl Catal A Gen 157:67–90

    Article  Google Scholar 

  • Weisz PB (1995) Molecular diffusion in microporous materials: formalisms and mechanisms. Ind Eng Chem Res 34:2692–2699

    Article  Google Scholar 

  • Yang F, Deng D, Pan X, Fu Q, Bao X (2015) Understanding nano effects in catalysis. Natl Sci Rev 2:183–201

    Article  Google Scholar 

  • Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Micropor Mesopor Mater 203:41–53

    Article  Google Scholar 

  • Yin H, Zhou T, Liu Y, Chai Y, Liu C (2011) NiMo/Al2O3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel. J Nat Gas Chem 20:441–448

    Article  Google Scholar 

  • Yin X, Chu N, Yang J, Wang J, Li Z (2014) Synthesis of the nanosized MCM-22 zeolite and its catalytic performance in methane dehydro-aromatization reaction. Catal Commun 43:218–222

    Article  Google Scholar 

  • Yin H, Liu X, Yao Y, Zhou T (2015) Nanosized HY zeolite-alumina composite support for hydrodesulfurization of FCC diesel. J Porous Mater 22:29–36

    Article  Google Scholar 

  • Yutthalekha T, Wattanakit C, Warakulwit C, Wannapakdee W, Rodponthukwaji K, Witoon T, Limtrakul J (2016) Hierarchical FAU-type zeolite nanosheets as green and sustainable catalysts for benzylation of toluene. J Clean Prod 142:1244–1251

    Article  Google Scholar 

  • Zhang YL, Jin XJ, Rong YH, Hsu TY, Jiang DY, Shi JL (2006) The size dependence of structural stability in nano-sized ZrO2 particles. Mater Sci Eng A 438–440:399–402

    Article  Google Scholar 

  • Zhang H, Chen B, Banfield JF (2009) The size dependence of the surface free energy of titania nanocrystals. Phys Chem Chem Phys 11:2553–2558

    Article  Google Scholar 

  • Zhang L, Fu W, Xiang M, Wang W, He M, Tang T (2015) MgO Nanosheet assemblies supported CoMo catalyst with high activity in hydrodesulfurization of dibenzothiophene. Ind Eng Chem Res 54:5580–5588

    Article  Google Scholar 

  • Zheng N, Stucky GD (2006) A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J Am Chem Soc 128:14278–14280

    Article  Google Scholar 

  • Zhou B (2007) Nanotechnology in catalysis volumes 3. Springer, New York

    Book  Google Scholar 

  • Zhou X, Xu W, Liu G, Panda D, Chen P (2009) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 132:138–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Bai or Zifeng Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Etim, U.J., Bai, P., Yan, Z. (2018). Nanotechnology Applications in Petroleum Refining. In: Saleh, T. (eds) Nanotechnology in Oil and Gas Industries. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-60630-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60630-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60629-3

  • Online ISBN: 978-3-319-60630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics