Skip to main content

Using Cognitive Modeling for Adaptive Automation Triggering

  • Conference paper
  • First Online:
Advances in Human Factors in Simulation and Modeling (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 591))

Included in the following conference series:

Abstract

The Multi-Level Cognitive Cybernetics (MLCC) [1] approach provides a methodological approach to studying adaptive automation and advancing its development across multiple levels of analysis. We follow up on the previous paper [1] by focusing on the cognitive modeling level of MLCC. Adaptive aids must only be triggered when the inclusion of the aid will boost performance relative to what it would be without the aid. Computational cognitive modeling provides a means to represent the cognitive sequence that completes a task. Using cognitive modeling and MLCC, we discuss two ways to provide optimal triggering for adaptive automation. First, models will provide a mapping of which cognitive stages caused the most difficulty for individuals and therefore aids may be designed to support those cognitive functions. Second, models may provide information about optimal thresholds for determining when a user is having difficulty, allowing more timely aid interventions than without the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassenti, D.N., Gamble, K.R., Bakdash, J.Z.: Multi-level cognitive cybernetics in human factors. In: Hale, K.S., Stanney, K.M. (eds.) Advances in Neuroergonomics and Cognitive Computing, pp. 315–326. Springer, New York (2016)

    Google Scholar 

  2. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. Wiley, New York (1948)

    Google Scholar 

  3. Kaber, D.B., Riley, J.M., Tan, K.W., Endsley, M.R.: On the design of adaptive automation for complex systems. Int. J. Cogn. Ergon. 5, 37–57 (2001)

    Article  Google Scholar 

  4. Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3, 159–177 (2002)

    Article  Google Scholar 

  5. Cassenti, D.N., Kelley, T.D.: Towards the shape of mental workload. In: 50th Annual Meeting Human Factors and Ergonomics Society, pp. 1147–1152. HFES, Santa Monica (2006)

    Google Scholar 

  6. Skitka, L.J., Mosier, K.L., Burdick, M.: Does automation bias decision-making? Int. J. Hum.-Compt. Stud. 51, 991–1006 (1999)

    Article  Google Scholar 

  7. Byrne, E.A., Parasuraman, R.: Psychophysiology and adaptive automation. Biol. Psychol. 42, 249–268 (1996)

    Article  Google Scholar 

  8. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988)

    Article  Google Scholar 

  9. Siewert, S.B.: Big data in the cloud. Data Veloc. Vol. Var. Veracity, 4–21 (2013)

    Google Scholar 

  10. Cowan, N.: Working Memory Capacity. Psychology Press, New York (2012)

    Google Scholar 

  11. Segerstrom, S.C., Nes, L.S.: Heart rate variability reflects self-regulatory strength, effort, and fatigue. Psychol. Sci. 18, 275–281 (2007)

    Article  Google Scholar 

  12. Schaefer, F., Haarmann, A., Boucsein, W.: The usability of cardiovascular and electrodermal measures for adaptive automation. In: Westerink, J.H.D.M., Ouwerkerk, M., Overbeek, T.J.M., Frank Pasveer, W., de Ruyter, B. (eds.) Probing Experience, pp. 235–243. Springer, Dordrecht (2008)

    Chapter  Google Scholar 

  13. de Greef, T., Lafeber, H., van Oostendorp, H., Lindenberg, J.: Eye movement as indicators of mental workload to trigger adaptive automation. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) International Conference on Foundations of Augmented Cognition, pp. 219–228. Springer, Heidelberg (2009)

    Google Scholar 

  14. Gupta, P., Cohen, N.J.: Theoretical and computational analysis of skill learning, repetition priming, and procedural memory. Psychol. Rev. 109, 401–448 (2002)

    Article  Google Scholar 

  15. Knowlton, B.J., Squire, L.R.: Remembering and knowing: two different expressions of declarative memory. J. Exp. Psychol.: Lear. Mem. Cogn. 21, 699–710 (1995)

    Google Scholar 

  16. Duric, Z., Gray, W.D., Heishman, R., Li, F., Rosenfeld, A., Schoelles, M.J., Wechsler, H.: Integrating perceptual and cognitive modeling for adaptive and intelligent human-computer interaction. Proc. IEEE 90, 1272–1289 (2002)

    Article  Google Scholar 

  17. Cassenti, D.N., Reifers, A.L.: Counting on ACT–R to represent time. In: 49th Human Factors and Ergonomics Society Meeting, pp. 1167–1172. HFES, Santa Monica (2005)

    Google Scholar 

  18. Loft, S., Sanderson, P., Neal, A., Mooij, M.: Modeling and predicting mental workload in en route air traffic control: critical review and broader implications. Hum. Factors 49, 376–399 (2007)

    Article  Google Scholar 

  19. Anderson, J.R., Lebiere, C.: The Atomic Components of Thought. Erlbaum, Mahwah (1998)

    Google Scholar 

  20. Jongman, G.M.G.: How to fatigue ACT–R. In: Second European Conference on Cognitive Modelling, pp. 52–57 (1998)

    Google Scholar 

  21. Kase, S.E., Roy, H.E., Cassenti, D.N.: Visualizing approaches for displaying measures of sentiment. In: 20th International Command and Control Research and Technology Symposium, p. 94990H. International Society for Optics and Photonics, Annapolis (2015)

    Google Scholar 

  22. Stewart, T.C., West, R.L.: Cognitive redeployment in ACT-R: salience, vision, and memory. In: Eighth International Conference on Cognitive Modeling, pp. 313–318. Taylor & Francis/Psychology Press, Oxford (2007)

    Google Scholar 

  23. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors 37, 32–64 (1995)

    Article  Google Scholar 

  24. Hanratty, T.P., Newcomb, E.A., Hammell II, R.J., Richardson, J.T., Mittrick, M.R.: A fuzzy-based approach to support decision making in complex military environments. Int. J. Intel. Inf. Tech. 12, 1–30 (2016)

    Article  Google Scholar 

  25. Allender, L.: Modeling human performance: impacting system design, performance, and cost. Simul. Ser. 32, 139–144 (2000)

    Google Scholar 

  26. Cassenti, D.N., Kelley, T.D., Carlson, R.A.: Modeling the workload-performance relationship. In: 54th Annual Human Factors and Ergonomics Society Meeting, pp. 1684–1688. HFES, Santa Monica (2010)

    Google Scholar 

  27. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors: lessons learned. J. Learn. Sci. 4, 167–207 (1995)

    Article  Google Scholar 

  28. Jastrzembski, T.S., Gluck, K.A., Rodgers, S., Krusmark, M.: The predictive performance optimizer: mathematical modeling for performance prediction. In: 18th Conference on Behavior Representation in Modeling and Simulation, pp. 141–142. BRIMS, Sundance (2009)

    Google Scholar 

  29. Jastrzembski, T.S., Rodgers, S.M., Gluck, K.A., Krusmark, M.A.: Predictive performance optimizer: U.S. Patent No. 8,777,628. U.S. Patent and Trademark Office Washington, DC (2014)

    Google Scholar 

  30. Fisher, C.R., Walsh, M.M., Blaha, L.M., Gunzelmann, G., Veksler, B.: Efficient parameter estimation of cognitive models for real-time performance monitoring and adaptive interfaces. In: 14th International Conference on Cognitive Modeling, pp. 113–118. ICCM, University Park, PA (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel N. Cassenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG (outside the USA)

About this paper

Cite this paper

Cassenti, D.N., Veksler, V.D. (2018). Using Cognitive Modeling for Adaptive Automation Triggering. In: Cassenti, D. (eds) Advances in Human Factors in Simulation and Modeling. AHFE 2017. Advances in Intelligent Systems and Computing, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-319-60591-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60591-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60590-6

  • Online ISBN: 978-3-319-60591-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics