Skip to main content

Introduction: Transition Metal Oxides and Their Heterostructures

  • Chapter
  • First Online:
  • 538 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Compounds incorporating transition metal (TM) elements are a unique and diverse class of solids (Khomskii, Transition Metal Compounds, 2014, [1]). Amongst them a plethora of strongly correlated electron systems is found with properties primarily governed by the anisotropically shaped d-orbital electrons. A selection of the most exciting TMOs certainly comprises the 3d elements Ti, Co, Cu, Mn, and Ni, the 4d elements Y, Nb, and Ru, and the 5d elements W and Ir.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is noted that in another set of models the high conductivity at the LaAlO\(_3\)/SrTiO\(_3\) interface is explained by the presence of oxygen vacancies [31].

References

  1. D.I. Khomskii, Transition Metal Compounds (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  2. M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70(4), 1039–1263 (1998)

    Article  ADS  Google Scholar 

  3. J. van den Brink, G. Khaliullin, D. Khomskii, Charge and orbital order in half-doped manganites. Phys. Rev. Lett. 83(24), 5118–5121 (1999)

    Article  ADS  Google Scholar 

  4. A. Bhattacharya, S.J. May, Magnetic oxide heterostructures. Annu. Rev. Mater. Res. 44(1), 65–90 (2014)

    Article  ADS  Google Scholar 

  5. M. Uehara, S. Mori, C.H. Chen, S.W. Cheong, Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999)

    Article  ADS  Google Scholar 

  6. Z.X. Shen, D.S. Dessau, Electronic structure and photoemission studies of late transition-metal oxides - Mott insulators and high-temperature superconductors. Phys. Rep. 253(1–3), 1–162 (1995)

    Article  ADS  Google Scholar 

  7. P.W. Anderson, Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79(2), 350–356 (1950)

    Article  ADS  MATH  Google Scholar 

  8. J.B. Goodenough, Theory of the role of covalence in the Perovskite-type manganites [La, M(II)]MnO\(_{3}\). Phys. Rev. 100(2), 564–573 (1955)

    Article  ADS  Google Scholar 

  9. C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81(3), 440–444 (1951)

    Article  ADS  MATH  Google Scholar 

  10. I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, U. Gösele, Intrinsic ferroelectric properties of strained tetragonal PbZr\(_{0.2}\)Ti\(_{0.8}\)O\(_{3}\) obtained on layer-by-layer grown, defect-free single-crystalline films. Adv. Mater. 18(13), 1657–1661 (2006)

    Article  Google Scholar 

  11. R.M. Bozorth, E.F. Tilden, A.J. Williams, Anisotropy and magnetostriction of some ferrites. Phys. Rev. 99(6), 1788–1798 (1955)

    Article  ADS  Google Scholar 

  12. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO\(_{3}\). Phys. Rev. B 67(18), 180401 (2003)

    Article  ADS  Google Scholar 

  13. S.N. Ruddlesden, P. Popper, New compounds of the K\(_{2}\)NiF\(_{4}\) type. Acta Crystallogr. 10(8), 538–539 (1957)

    Article  Google Scholar 

  14. A. Fujimori, Electronic structure of metallic oxides: band-gap closure and valence control. J. Phys. Chem. Solids 53(12), 1595–1602 (1992)

    Article  ADS  Google Scholar 

  15. J.C. Slater, Magnetic effects and the Hartree-Fock equation. Phys. Rev. 82(4), 538–541 (1951)

    Article  ADS  Google Scholar 

  16. N.F. Mott, The transition to the metallic state. Philos. Mag. 6(62), 287–309 (1961)

    Article  ADS  Google Scholar 

  17. J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. A: Math. Phys. Eng. Sci. 276(1365), 238–257 (1963)

    Article  ADS  Google Scholar 

  18. A. Fujimori, F. Minami, Valence-band photoemission and optical absorption in nickel compounds. Phys. Rev. B 30(2), 957–971 (1984)

    Article  ADS  Google Scholar 

  19. J. Zaanen, G.A. Sawatzky, J.W. Allen, Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55(4), 418–421 (1985)

    Article  ADS  Google Scholar 

  20. H. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Emergent phenomena at oxide interfaces. Nat. Mater. 11(2), 103–113 (2012)

    Article  ADS  Google Scholar 

  21. S.A. Chambers, Epitaxial growth and properties of doped transition metal and complex oxide films. Adv. Mater. 22(2), 219–248 (2010)

    Article  MathSciNet  Google Scholar 

  22. D.G. Schlom, L.Q. Chen, X. Pan, A. Schmehl, M.A. Zurbuchen, A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91(8), 2429–2454 (2008)

    Article  Google Scholar 

  23. M. Cesaria, A.P. Caricato, G. Maruccio, M. Martino, LSMO-growing opportunities by PLD and applications in spintronics. J. Phys.: Conf. Ser. 292, 012003 (2011)

    Google Scholar 

  24. R. Eason (ed.), Pulsed Laser Deposition of Thin Films (Hoboken, New Jersey: Wiley, New York, 2006)

    Google Scholar 

  25. F. Wrobel, A.F. Mark, G. Christiani, W. Sigle, H.-U. Habermeier, P.A. van Aken, G. Logvenov, B. Keimer, E. Benckiser, Comparative study of LaNiO\(_{3}\)/LaAlO\(_{3}\) heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy. Appl. Phys. Lett. 110, 041606 (2017)

    Article  ADS  Google Scholar 

  26. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, J.-M. Triscone, Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2(1), 141–165 (2011)

    Article  ADS  Google Scholar 

  27. J. Chakhalian, J.W. Freeland, G. Srajer, J. Strempfer, G. Khaliullin, J.C. Cezar, T. Charlton, R. Dalgliesh, C. Bernhard, G. Cristiani, H.-U. Habermeier, B. Keimer, Magnetism at the interface between ferromagnetic and superconducting oxides. Nat. Phys. 2, 244–248 (2006)

    Article  Google Scholar 

  28. Z. Liao, M. Huijben, Z. Zhong, N. Gauquelin, S. Macke, R.J. Green, S. Van Aert, J. Verbeeck, G. Van Tendeloo, K. Held, G.A. Sawatzky, G. Koster, G. Rijnders, Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nat. Mater. 15(4), 425–431 (2016)

    Article  ADS  Google Scholar 

  29. D. Kan, R. Aso, R. Sato, M. Haruta, H. Kurata, Y. Shimakawa, Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nat. Mater. 15, 432 (2016)

    ADS  Google Scholar 

  30. N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M. Triscone, J. Mannhart, Superconducting interfaces between insulating oxides. Science 317(5842), 1196–1199 (2007)

    Article  ADS  Google Scholar 

  31. G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.M. Broto, A. Barthélémy, A. Fert, High mobility in LaAlO\(_{3}\)/SrTiO\(_{3}\) heterostructures: origin, dimensionality, and perspectives. Phys. Rev. Lett. 98(21), 3–6 (2007)

    Article  Google Scholar 

  32. K.S. Takahashi, M. Kawasaki, Y. Tokura, Interface ferromagnetism in oxide superlattices of CaMnO\(_{3}\)/CaRuO\(_{3}\). Appl. Phys. Lett. 79(9), 1324–1326 (2001)

    Article  ADS  Google Scholar 

  33. J. Chakhalian, J.W. Freeland, H. Habermeier, G. Cristiani, G. Khaliullin, M.V. Veenendaal, B. Keimer, Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007)

    Article  ADS  Google Scholar 

  34. N. Driza, S. Blanco-Canosa, M. Bakr, S. Soltan, M. Khalid, L. Mustafa, K. Kawashima, G. Christiani, H.-U. Habermeier, G. Khaliullin, C. Ulrich, M. Le Tacon, B. Keimer, Long-range transfer of electron-phonon coupling in oxide superlattices. Nat. Mater. 11(8), 675–681 (2012)

    Article  ADS  Google Scholar 

  35. N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev, Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80(9), 1988–1991 (1998)

    Article  ADS  Google Scholar 

  36. T.J. Anderson, S. Ryu, H. Zhou, L. Xie, J.P. Podkaminer, Y. Ma, J. Irwin, X.Q. Pan, M.S. Rzchowski, C.B. Eom, Metastable honeycomb SrTiO\(_{3}\)/SrIrO\(_{3}\) heterostructures. Appl. Phys. Lett. 108(15), 151604 (2016)

    Article  ADS  Google Scholar 

  37. E. Bousquet, A. Cano, Non-collinear magnetism in multiferroic perovskites. J. Phys.: Condens. Matter 28(12), 123001 (2016)

    Google Scholar 

  38. J. Chakhalian, A.J. Millis, J. Rondinelli, Whither the oxide interface. Nat. Publ. Group 11(2), 92–94 (2012)

    Google Scholar 

  39. J. Chakhalian, J.W. Freeland, A.J. Millis, C. Panagopoulos, J.M. Rondinelli, Colloquium: emergent properties in plane view: strong correlations at oxide interfaces. Rev. Mod. Phys. 86(4), 1189–1202 (2014)

    Article  ADS  Google Scholar 

  40. J. Mannhart, D.G. Schlom, Oxide interfaces-an opportunity for electronics. Science (New York, N.Y.) 327(5973), 1607–1611 (2010)

    Article  ADS  Google Scholar 

  41. I. Žutić, J. Fabian, S.D. Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76(2), 323–410 (2004)

    Article  ADS  Google Scholar 

  42. T. Mizokawa, D.I. Khomskii, G.A. Sawatzky, Spin and charge ordering in self-doped Mott insulators. Phys. Rev. B 61(17), 4 (1999)

    Google Scholar 

  43. V. Bisogni, S. Catalano, R.J. Green, M. Gibert, R. Scherwitzl, Y. Huang, V.N. Strocov, P. Zubko, S. Balandeh, J.-M. Triscone, G. Sawatzky, T. Schmitt, Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates. Nat. Commun. 7, 13017 (2016)

    Article  ADS  Google Scholar 

  44. J. Chaloupka, G. Khaliullin, Orbital order and possible superconductivity in LaNiO\(_{3}\)/LaMO\(_{3}\) superlattices. Phys. Rev. Lett. 100(1), 3–6 (2008)

    Article  Google Scholar 

  45. S. Middey, J. Chakhalian, P. Mahadevan, J. Freeland, A. Millis, D. Sarma, Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu. Rev. Mater. Res. 46, 305–334 (2016)

    Article  ADS  Google Scholar 

  46. J. Liu, M. Kargarian, M. Kareev, B. Gray, P.J. Ryan, A. Cruz, N. Tahir, Y.-D. Chuang, J. Guo, J.M. Rondinelli, J.W. Freeland, G.A. Fiete, J. Chakhalian, Heterointerface engineered electronic and magnetic phases of NdNiO\(_{3}\) thin films. Nat. Commun. 4, 2714 (2013)

    Google Scholar 

  47. S. Catalano, M. Gibert, V. Bisogni, O.E. Peil, F. He, R. Sutarto, M. Viret, P. Zubko, R. Scherwitzl, A. Georges, G.A. Sawatzky, T. Schmitt, J.M. Triscone, Electronic transitions in strained SmNiO\(_{3}\) thin films. APL Mater. 2(11), 7 (2014)

    Google Scholar 

  48. A. Frano, E. Schierle, M.W. Haverkort, Y. Lu, M. Wu, S. Blanco-Canosa, U. Nwankwo, A.V. Boris, P. Wochner, G. Cristiani, H.U. Habermeier, G. Logvenov, V. Hinkov, E. Benckiser, E. Weschke, B. Keimer, Orbital control of noncollinear magnetic order in nickel oxide heterostructures. Phys. Rev. Lett. 111, 106804 (2013)

    Google Scholar 

  49. D. Tenne, A. Bruchhausen, N.D. Lanzillotti-Kimura, A. Fainstein, R.S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J.H. Haeni, W. Tian, D.G. Schlom, K.J. Choi, D.M. Kim, C.B. Eom, H.P. Sun, X.Q. Pan, Y.L. Li, L.Q. Chen, Q.X. Jia, S.M. Nakhmanson, K.M. Rabe, X.X. Xi, Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313(5793), 1614–1616 (2006)

    Article  ADS  Google Scholar 

  50. S. Lee, R. Chen, L. Balents, Landau theory of charge and spin ordering in the nickelates. Phys. Rev. Lett. 106(1), 7–10 (2011)

    Google Scholar 

  51. G.R. Stewart, Superconductivity in iron compounds. Rev. Mod. Phys. 83(4), 1589–1652 (2011)

    Google Scholar 

  52. J.A. Alonso, J.L. García-Muñoz, M.T. Fernández-Díaz, M.A.G. Aranda, M.J. Martínez-Lope, M.T. Casais, Charge disproportionation in RNiO\(_{3}\) perovskites: simultaneous metal-insulator and structural transition in YNiO\(_{3}\). Phys. Rev. Lett. 82, 3871–3874 (1999)

    Article  ADS  Google Scholar 

  53. I.R. Buitrago, C.I. Ventura, Magnetic excitations of perovskite rare-earth nickelates: RNiO\(_{3}\). J. Magn. Magn. Mater. 394, 148–154 (2015)

    Article  ADS  Google Scholar 

  54. J.L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, Sudden appearance of an unusual spin density wave at the metal-insulator transition in the perovskites RNiO\(_{3}\) (R \(=\) Pr, Nd). Europhys. Lett. (EPL) 20(3), 241–247 (1992)

    Article  ADS  Google Scholar 

  55. A. Muñoz, J.A. Alonso, M.J. Martínez-Lope, M.T. Fernández-Díaz, On the magnetic structure of DyNiO\(_{3}\). J. Solid State Chem. 182(7), 1982–1989 (2009)

    Article  ADS  Google Scholar 

  56. V. Scagnoli, U. Staub, A.M. Mulders, M. Janousch, G.I. Meijer, G. Hammerl, J.M. Tonnerre, N. Stojic, Role of magnetic and orbital ordering at the metal-insulator transition in NdNiO\(_{3}\). Phys. Rev. B - Condens. Matter Mater. Phys. 73(10), 1–4 (2006)

    Article  Google Scholar 

  57. R.J. Green, M.W. Haverkort, G.A. Sawatzky, Bond disproportionation and dynamical charge fluctuations in the perovskite rare-earth nickelates. Phys. Rev. B 94, 195127 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hepting .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hepting, M. (2017). Introduction: Transition Metal Oxides and Their Heterostructures. In: Ordering Phenomena in Rare-Earth Nickelate Heterostructures . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-60531-9_1

Download citation

Publish with us

Policies and ethics