Hemomath pp 265-293 | Cite as

Thermal Ablative Procedures in the Treatment of Heart Arrhythmia

  • Antonio Fasano
  • Adélia Sequeira
Part of the MS&A book series (MS&A, volume 18)


There are several pathological conditions producing alterations of the normal heart rhythm. One of the most common, affecting millions, is atrial fibrillation, due to abnormal (ectopic) electrical stimuli frequently originating in the region where pulmonary veins empty into the left atrium. When the disease is drug resistant the remedy is to perform a tissue ablation in those sites, either by delivering radiofrequency power, or by cryoablation. In this chapter we will describe the important role of mathematics in mapping the thermal field around the heat or cold sources, whose knowledge is essential to prevent serious damages to important organs. It will also be a great opportunity to illustrate the birth of electrophysiology and to summarize its fantastic development.


  1. 1.
    S. Abdalla, S.S. Al-ameer, S.H. Al-Magaishi, Electrical properties with relaxation through human blood. Biomicrofluidics 4(3), 034101 (2010)Google Scholar
  2. 2.
    H. Ahmed, P. Neuzil, A. D’ Avila, Y.M. Cha, M. Laragy, K. Mares, W.R. Brugge, D.G. Forcione, J.N. Ruskin, D.L. Packer, V.Y. Reddy, The esophageal effects of cryoenergy during cryoablation for atrial fibrillation. Heart Rhythm 6, 962–969 (2009)Google Scholar
  3. 3.
    B. Al-Alao, A. Pickens, O. Lattouf, Atrio-oesophageal fistula: dismal outcome of a rare complication with no common solution. Interact. CardioVasc. Thorac. Surg. (2016). doi:10.1093/icvts/ivw233Google Scholar
  4. 4.
    J.G. Andrade, M. Dubuc, P.G. Guerra, The biophysics and biomechanics of cryoballoon ablation. Pacing Clin. Electrophysiol. 35, 1162–1168 (2012)CrossRefGoogle Scholar
  5. 5.
    D. Aquilina, A brief history of cardiac pacing. Images Paediatr. Cardiol. 8(2), 17–81 (2006)Google Scholar
  6. 6.
    G. Arena, A. Fasano, L. Anfuso, C. Pandozi, Thermal field in a cryoablation procedure for pulmonary veins isolation: importance of esophageal temperature monitoring. J Atrial Fibrillation 9(6), 1–7 (2017)Google Scholar
  7. 7.
    T.D. Bahnson, Strategies to minimize the risk of esophageal injury during catheter ablation for atrial fibrillation. Pacing Clin. Electrophysiol. 32(2), 248–260 (2009)CrossRefGoogle Scholar
  8. 8.
    E.J. Berjano, Theoretical modeling for radiofrequency ablation: state of the art and challenges for the future. Biomed. Eng. OnLine 5, 24 (2006)CrossRefGoogle Scholar
  9. 9.
    E.J. Berjano, F. Hornero, Thermal-electrical modeling for epicardial atrial radiofrequency ablation. IEEE Trans. Biomed. Eng. 51, 1348–1357 (2004)CrossRefGoogle Scholar
  10. 10.
    E.J. Berjano, F. Hornero, A cooled intraesophageal balloon to prevent thermal injury during endocardial surgical radiofrequency ablation of the left atrium: a finite element study. Phys. Med. Biol. 50(20), 269–279 (2005)CrossRefGoogle Scholar
  11. 11.
    R. Bhardwaj, V.I. Reddy, Visually-guided laser balloon ablation of atrial fibrillation: a “Real World” experience. Rev. Esp. Cardiol. 69, 474–476 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Borchert, T. Lawrenz, B. Hansky, C. Stellbrink, Lethal atrioesophageal fistula after pulmonary vein isolation using high-intensity focused ultrasound (HIFU). Heart Rhythm 5(1), 145–148 (2008)CrossRefGoogle Scholar
  13. 13.
    A.J. Bredikis, D.J. Wilber (eds.), Cryoablation of Cardiac Arrhythmias (Elsevier, Amsterdam, 2014)Google Scholar
  14. 14.
    T.J. Bunch, K.A. Ellenbogen, D.L. Packer, S.J. Asirvatham, Vagus nerve injury after posterior atrial radiofrequency ablation. Heart Rhythm 5, 1327–1330 (2008)CrossRefGoogle Scholar
  15. 15.
    H. Calkins, J. Brugada, R. Cappato et al., HRS/EHRA/ECAS Expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. A report of the Heart Rhythm Society (HRS) task force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 9, 632–696.e21 (2012)Google Scholar
  16. 16.
    R. Cappato, H. Calkins, S.A. Chen, W. Davies, Y. Iesaka, J. Kalman, Y.H. Kim, G. Klein, A. Natale, D. Packer, A. Skanes, Prevalence and causes of fatal outcome in catheter ablation of atrial fibrillation. J. Am. Coll. Cardiol. 53, 1798–1803 (2009)CrossRefGoogle Scholar
  17. 17.
    R. Cappato, H. Calkins, S.A. Chen, W. Davies, Y. Iesaka, J. Kalman, Y.H. Kim, G. Klein, A. Natale, D.Packer, A. Skanes, F. Ambrogi, E. Biganzoli, Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 32–38 (2010)CrossRefGoogle Scholar
  18. 18.
    S.M. Cooper, R.P.R. Dawber, The history of cryosurgery. J. R. Soc. Med. 94(4), 196–201 (2001)Google Scholar
  19. 19.
    N. Coulombe, J. Paulin, W. Su, Improved in vivo performance of second-generation cryoballoon for pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 24, 919–925 (2013)CrossRefGoogle Scholar
  20. 20.
    J.L. Cox, T.E. Canavan, R.B. Schuessler et al., The surgical treatment of atrial fibrillation: II. Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation. J. Thorac. Cardiovasc. Surg. 101, 406–426 (1991)Google Scholar
  21. 21.
    I. Deisenhofer, B. Zrenner, Y.-h. Yin, H.-F. Pitschner, M. Kuniss, G. Gromann, S. Stiller, A. Luik, C. Veltmann, J. Frank, J. Linner, H.L. Estner, A. Pflaumer, J. Wu, C. von Bary, E. Ücer, T. Reents, S. Tzeis, S. Fichtner, S. Kathan, M.R. Karch, C. Jilek, S. Ammar, C. Kolb, Z.-C. Liu, B. Haller, C. Schmitt, G. Hessling, Cryoablation versus radiofrequency energy for the ablation of atrioventricular nodal reentrant tachycardia (the CYRANO study): results from a large multicenter prospective randomized trial. Circulation 122, 2239–2245 (2010)Google Scholar
  22. 22.
    S. Deiss, A. Metzner, F. Ouyang, R.R. Tilz, S. Mathew, C. Lemes, C.H. Heeger, T. Maurer, K.H. Kuck, E. Wissner, Incidence of significant delayed esophageal temperature drop after Cryoballoon-Based Pulmonary Vein Isolation. J. Cardiovasc. Electrophysiol. (2016). doi:10.1111/jce.13008Google Scholar
  23. 23.
    T. Deneke, K. Bunz, B. Bastian, M. Pasler, H. Anders, R. Lehmann, W. Meuser, J.N. de Groot, M. Horlitz, R. Haberkorn, A. Mugge, D. Shin, Utility of esophageal temperature monitoring during pulmonary vein isolation for atrial fibrillation using duty-cycled phased radiofrequency ablation. J. Cardiovasc. Electrophysiol. 21, 1–17 (2010)CrossRefGoogle Scholar
  24. 24.
    N. Doll, M.A. Borger, A. Fabricius, S. Stephan, J. Gummert, F.W. Mohr, J. Hauss, H. Kottkamp, G. Hindricks, Esophageal perforation during left atrial radiofrequency ablation: is the risk too high? J. Thorac. Cardiovasc. Surg. 125, 836–842 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Dubuc, P. Khairy, A. Rodriguez-Santiago, M. Talajic, J.C. Tardif, B. Thibault, D. Roy, Catheter cryoablation of the atrioventricular node in patients with atrial fibrillation: a novel technology for ablation of cardiac arrhythmias. J. Cardiovasc. Electrophysiol. 12(4), 439–444 (2001)CrossRefGoogle Scholar
  26. 26.
    O.J. Eick, Factors influencing lesion formation during radiofrequency catheter ablation. Indian Pacing Electrophysiol. J. 3(3), 117–127 (2003)Google Scholar
  27. 27.
    W. Einthoven, Ueber die Form des menschlichen Electrocardiogramms. Arch. Ges. Physiol. 60, 101–123 (1895)CrossRefGoogle Scholar
  28. 28.
    W. Einthoven, Ein neues Galvanometer. Ann. Phys. 12, 1059–1071 (1903)CrossRefGoogle Scholar
  29. 29.
    A. Fasano, Higher incidence of esophageal lesions after atrial fibrillation ablation related to the use of esophageal temperature probes (letter to the Editor). Heart Rhythm 12(9), e116 (2015)Google Scholar
  30. 30.
    A. Fasano, L. Anfuso, S. Bozzi, C. Pandozi, Safety and necessity of the use of esophageal probes for temperature measurement during RF ablation for the treatment of atrial fibrillation. J. Atrial Fibrillation 9, 11–19 (2016)Google Scholar
  31. 31.
    F. Franceschi, M. Dubuc, P. Guerra, P. Khairy, Phrenic nerve monitoring with diaphragmatic electromyography during cryoballoon ablation for atrial fibrillation: the first human application. Heart Rhythm 8(7), 1068–1071 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Fürnkranz, K.R. Chun, A. Metzner, D. Nuyens, B. Schmidt, A. Burchard, R. Tilz, F. Ouyang, K.H. Kuch, Esophageal endoscopy results after pulmonary vein isolation using the single big cryoballoon technique. J. Cardiovasc. Electrophysiol. 21, 869–874 (2010)Google Scholar
  33. 33.
    A. Fürnkranz, S. Bordignon, B. Schmidt, M. Böhmig, M.C. Bohmer, F. Bode, B. Schulte-Hahn, B. Novak, A.U. Dignaß, Luminal esophageal temperature predicts esophageal lesions after second-generation cryoballoon pulmonary vein isolation. Heart Rhythm 10, 789–793 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Fürnkranz, S. Bordignon, B. Schmidt, M. Gunawardene, B. Schulte-Hahn, V. Urban, F. Bode, B. Novak, J.K. Chun, Improved procedural efficacy of pulmonary vein isolation using the novel second-generation cryoballoon. J. Cardiovasc. Electrophysiol. 24, 492–497 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Fürnkranz, S. Bordignon, M. Böhmig, A. Konstantinou, D. Dugo, L. Perrotta, T. Klopffleisch, B. Nowak, A.U. Digna, B. Schmidt, J.K. Chun, Reduced incidence of esophageal lesions by luminal esophageal temperature guided second-generation cryoballoon ablation. Heart Rhythm 12(2), 268–274 (2015)CrossRefGoogle Scholar
  36. 36.
    W.B. Fye, Ventricular fibrillation and defibrillation: historical perspectives with emphasis on the contributions of John MacWilliam, Carl Wiggers, and William Kouwenhoven. Circulation 71, 858–865 (1985)CrossRefGoogle Scholar
  37. 37.
    N.P. Gallagher, Radio-frequency catheter ablation for treatment of atrial fibrillation: the influence of probe contact on impedance and lesion formation, MS thesis, University of Alberta, 2012Google Scholar
  38. 38.
    A.M. Gillinov, G. Pettersson, T.W. Rice, Esophageal injury during radiofrequency ablation for atrial fibrillation. J. Thorac. Cardiovasc. Surg. 122, 1239–4120 (2001)CrossRefGoogle Scholar
  39. 39.
    A. González Suárez, F. Hornero, E.J. Berjano, Mathematical modeling of epicardial RF ablation of atrial tissue with overlying epicardial fat. Open Biomed. Eng. J. 4, 47–55 (2010)CrossRefGoogle Scholar
  40. 40.
    J. Gopalakrishnan, A mathematical model for irrigated epicardial radiofrequency ablation. Ann. Biomed. Eng. 30(7), 884–893 (2002)CrossRefGoogle Scholar
  41. 41.
    L.J. Gula, Phrenic nerve damage from cryoablation: dealbreaker or just a hiccup? J. Cardiovasc. Electrophysiol. 25, 195–196 (2014)CrossRefGoogle Scholar
  42. 42.
    L.M. Haegeli, H. Calkins, Catheter ablation of atrial fibrillation: an update. Eur. Heart J. 35, 2454–2459 (2014)CrossRefGoogle Scholar
  43. 43.
    M. Haïssaguerre, F.I. Marcus, B. Fischer, J. Clementy, Radiofrequency catheter ablation in unusual mechanisms of atrial fibrillation: report of three cases. J. Cardiovasc. Electrophysiol. 5(9), 743–751 (1994)CrossRefGoogle Scholar
  44. 44.
    M. Haïssaguerre, P. Jais, D.C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Metayer, J. Clementy, Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998)CrossRefGoogle Scholar
  45. 45.
    U. Halm, T. Gaspar, M. Zachaus, S. Sack, A. Arya, C. Piorkowski, I. Knigge, G. Hindricks, D. Husser, Thermal esophageal lesions after radiofrequency catheter ablation of left atrial arrhythmias. Am. J. Gastroenterol. 105, 551–556 (2010)CrossRefGoogle Scholar
  46. 46.
    J.R. Henson, Descartes and the ECG lettering series. J. Hist. Med. Allied Sci. 26(2), 181–186 (1971)CrossRefGoogle Scholar
  47. 47.
    S.K.S. Huang, J.M. Miller (eds.), Catheter Ablation of Cardiac Arrhythmias. Expert Consult - Online (Elsevier Health Sciences, New York, 2014)Google Scholar
  48. 48.
    J.W. Hurst, Naming of the waves in the ECG, with a brief account of their genesis. Circulation 98, 1937–1942 (1998)CrossRefGoogle Scholar
  49. 49.
    A. Ikeda, H. Nakagawa, H. Lambert, D.C. Shah, E. Fonck, A. Yulzari, T. Sharma, J.V. Pitha, R. Lazzara, W.M. Jackman, Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart: electrode amplitude, impedance and electrode temperature are poor predictors of electrode-tissue contact force and lesion size. Circ. Arrhythm. Electrophysiol. 7(6), 1174–1180 (2014)CrossRefGoogle Scholar
  50. 50.
    B. Jackowska-Zduniak, U. Forys, Mathematical model of the atrioventricular double nodal response tachycardia and double-fire pathology. Math. Biosci. Eng. 13(6), 1143–1158 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    P. Jais, M. Haissaguerre, D.C. Shah, S. Chouairi, L. Gencel, M. Hocini, J. Clementy, A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation 95(3), 572–576 (1997)CrossRefGoogle Scholar
  52. 52.
    M.J. Janse, M.R. Rosen, History of arrhythmias. Handb. Exp. Pharmacol. 171, 1–39 (2006)CrossRefGoogle Scholar
  53. 53.
    R. Kawasaki, A. Gauri, D. Elmouchi, M. Duggal, A. Bhan, Atrioesophageal fistula complicating cryoballoon pulmonary vein isolation for paroxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol. 25(7), 787–792 (2014)CrossRefGoogle Scholar
  54. 54.
    J. Keener, J. Sneyd, Mathematical Physiology. II, System Physiology. Interdisciplinary Applied Mathematics, vol. 8/II, 2nd edn. (Springer, New York, 2009)Google Scholar
  55. 55.
    M.W. Keller, S. Schuler, M. Wilhelms, G. Lenis, G. Seemann, C. Schmitt, O. Dssel, Characterization of radiofrequency ablation lesion development based on simulated and measured intracardiac electrograms. IEEE Trans. Biomed. Eng. 61, 2467–2478 (2014)CrossRefGoogle Scholar
  56. 56.
    K. Kiuchi, K. Okajima, A. Shimane, G. Kanda, K. Yokoi, J. Teranishi, K. Aoki, M. Chimura, T. Toba, S. Oishi, T. Sawada, Y. Tsukishiro, T. Onishi, S. Kobayashi, Y. Taniguchi, S. Yamada, Y. Yasaka, H. Kawai, A. Yoshida, K. Fukuzawa, M. Itoh, K. Imamura, R. Fujiwara, A. Suzuki, T. Nakanishi, S. Yamashita, K. Hirata, H. Tada, H. Yamasaki, Y. Naruse, M. Igarashi, K. Aonuma, Impact of esophageal temperature monitoring guided atrial fibrillation ablation on preventing asymptomatic excessive transmural injury. J. Arrhythmia (2015). doi:10.1016/j.joa.2015.07.003Google Scholar
  57. 57.
    M.W. Kolasa, Y. Okumura, S.B. Johnson, D.L. Packer, Characterization of esophageal temperature response to catheter based cryoballoon ablation of pulmonary veins in dogs. Circulation 114, II 603 (2006)Google Scholar
  58. 58.
    K.-H. Kuck, J. Brugada, A. Furnkranz, A. Metzner, F. Ouyang, K.R.J. Chun, A. Elvan, T. Arentz, K. Bestehorn, S.J. Pocock, J.P. Albenque, C. Tondo, For the FIRE AND ICE Investigators. N. Engl. J. Med. 374, 2235–2245 (2016)CrossRefGoogle Scholar
  59. 59.
    M. Küne, C. Sticherling, Cryoballoon ablation for pulmonary vein isolation of atrial fibrillation: a better way to complete the circle? J. Innov. Card. Rhythm Manage. 2, 264–270 (2011)Google Scholar
  60. 60.
    T. Kuwahara, A. Takahashi, K. Okubo, K. Takagi, K. Yamao, E. Nakashima, N. Kawaguchi, M. Takigawa,Y. Watari, T. Sugiyama, K. Handa, S. Kimura, H. Hikita, A. Sato, K. Aonuma, Oesophageal cooling with ice water does not reduce the incidence of oesophageal lesions complicating catheter ablation of atrial fibrillation: randomized controlled study. Europace 16, 834–839 (2014)CrossRefGoogle Scholar
  61. 61.
    G. Lee, P.B. Sparks, J.B Morton, P.M. Kistler, J.K. Vohra, C. Medi, R. Rosso, A. Teh, K. Halloran, J.M. Kalman, Low risk of major complications associated with pulmonary vein antral isolation for atrial fibrillation: results of 500 consecutive ablation procedures in patients with low prevalence of structural heart disease from a single center. J. Cardiovasc. Electrophysiol. 22, 163–168 (2011)Google Scholar
  62. 62.
    H.W. Lim, G.A. Cogert, C.S. Cameron, V.Y. Cheng, D.A. Sandler, Atrioesophageal fistula during cryoballoon ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 25(2), 208–213 (2014)CrossRefGoogle Scholar
  63. 63.
    B. Lown, R. Amarasingham, J. Neumann, New method for terminating cardiac arrhythmias. Use of synchronized capacitor discharge. JAMA 182, 548–555 (1962)Google Scholar
  64. 64.
    D.L. Lustgarten, History of cardiosurgery and cryoablation, Chaps. 1, 3–12, in Cryoablation of Cardiac Arrhythmias, ed. by A.J. Bredikis, D.J. Wilber (Elsevier, Amsterdam, 2014)Google Scholar
  65. 65.
    G. Maccabelli, H. Mizuno, P. Della Bella, Epicardial ablation for ventricular tachycardia. Indian Pacing Electrophysiol. J. 12(6), 250–268 (2012)CrossRefGoogle Scholar
  66. 66.
    J. Marti-Almor, M.E. Jauregui-Abularach, B. Benito, E. Valles, V. Bazan, A. Sanchez-Font, I. Vollmer, C. Altaba, M.A. Guijo, M. Hervas, J. Bruguera-Cortada, Pulmonary hemorrhage after cryoballoon ablation for pulmonary vein isolation in the treatment of atrial fibrillation. Chest 145(1), 156–157 (2014)CrossRefGoogle Scholar
  67. 67.
    MAUDE Adverse Event Report: Medtronic Cryocath LP Arctic Front Cardiac Cryoablation Catheter (2011). Google Scholar
  68. 68.
    J. McMichael, Sir James Mackenzie and atrial fibrillation - a new perspective. J. R. Coll. Gen. Pract. 31, 402–406 (1981)Google Scholar
  69. 69.
    A. Metzner, B. Schmidt, A. Fuernkranz, E. Wissner, R.R. Tilz, K.R.J. Chun, K. Neven, M. Konstantinidou, A. Rillig, Y. Yoshiga, S. Mathew, I. Koester, F. Ouyang, K.-H. Kuck, One-year clinical outcome after pulmonary vein isolation using the novel endoscopic ablation system in patients with paroxysmal atrial fibrillation. Heart Rhythm 8(7), 988–993 (2011)CrossRefGoogle Scholar
  70. 70.
    A. Metzner, A. Burchard, P. Wohlmuth, Increased incidence of esophageal thermal lesions using the second-generation 28-mm cryoballoon. Circ. Arrhytm. Electrophysiol. 6, 769–775 (2013)Google Scholar
  71. 71.
    A. Metzner, P. Rausch, C. Lemes, B. Reissmann, A. Bardyszewski, R. Tilz, A. Rillig, S. Mathew, S. Deiss, M. Kamioka, T. Toennis, T. Lin, F. Ouyang, K.H. Kuck, E. Wissner, The incidence of phrenic nerve injury during pulmonary vein isolation using the second-generation 28 mm Cryoballoon. J. Cardiovasc. Electrophysiol. 25(5), 466–470 (2014)CrossRefGoogle Scholar
  72. 72.
    D. Miklavčič, N. Pavšelj, F.X. Hart, Electric properties of tissues, in Wiley Encyclopedia of Biomedical Engineering (Wiley, New York, 2006), pp. 1–12Google Scholar
  73. 73.
    P. Müller, J.W. Dietrich, P. Halbfass, A. Abouarab, F. Fochler, A. Szöllösi, K. Nentwich, M. Roos, J. Krug, A. Schade, A. Mugge, T. Deneke, Higher incidence of esophageal lesions after AF ablation related to the use of esophageal temperature probes. Heart Rhythm J. 12(7), 1464–1469 (2015)CrossRefGoogle Scholar
  74. 74.
    D. Musat, E.F. Aziz, J. Koneru, A. Arshad, G.S. Kamath, S. Mittal, J. Steinberg, Computational method to predict esophageal temperature elevations during pulmonary vein isolation. Pacing Clin. Electrophysiol. 33, 1239–1248 (2010)CrossRefGoogle Scholar
  75. 75.
    H. Nakagava, M. Antz, T. Wong, B. Schmidt, F. Ouyang, R. Wu, K. Yokoyama, D. Lockwood, S.S. Po, K.J. Beckman, D.W. Davies, K.H. Kuck, W.M. Jackman, Initial experience using a forward direct balloon catheter for pulmonary vein antrum isolation in patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 18, 136–144 (2007)CrossRefGoogle Scholar
  76. 76.
    K. Neven, B. Schmidt, A. Metzner, K. Otomo, D. Nuyens, T. De Potter, K.R.J. Chun, F. Ouyang, K.H. Kuck, Fatal end of a safety algorithm for pulmonary vein isolation with use of high-intensity focused ultrasound. Circ. Arrhythm. Electrophysiol. 3(3), 260–265 (2010)CrossRefGoogle Scholar
  77. 77.
    K. Neven, A. Metzner, B. Schmidt, F. Ouyang, K.H. Kuck, Two-year clinical follow-up after pulmonary vein isolation using high-intensity focused ultrasound (HIFU) and an esophageal temperature-guided safety algorithm. Heart Rhythm 9, 407–413 (2012)CrossRefGoogle Scholar
  78. 78.
    C. Ozcan, J. Ruskin, M. Mansour, Cryoballoon catheter ablation in atrial fibrillation. Cardiol. Res. Pract. 2011, Article ID 256347, 6 pp. (2011)Google Scholar
  79. 79.
    D.L. Packer, R.C. Kowal, K.R. Wheelan, J.M. Irwin, J. Champagne, P.G. Guerra, M. Dubuc, V. Reddy, L. Nelson, R.G. Holcomb, J.W. Lehmann, J.N. Ruskin, Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation. First results of the north American Arctic Front (STOP AF) pivotal trial. J. Am. Coll. Cardiol. 61, 1713–1723 (2013)Google Scholar
  80. 80.
    C. Pappone, G. Oreto, F. Lamberti, G. Vicedomini, M.L. Loricchio, S. Shpun, M. Rillo, M.P. Calabrò, A. Conversano, S.A. Ben-Haim, R. Cappato, S. Chierchia. Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation 100(11), 1203–1208 (1999)CrossRefGoogle Scholar
  81. 81.
    C. Pappone, S. Rosanio, G. Oreto, M. Tocchi, F. Gugliotta, G. Vicedomini, A. Salvati, C. Dicandia, P. Mazzone, V. Santinelli, S. Gulletta, S. Chierchia, Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation 102(21), 2619–2628 (2000)CrossRefGoogle Scholar
  82. 82.
    C. Pappone, H. Oral, V. Santinelli, G. Vicedomini, C.C. Lang, F. Manguso, L. Torracca, S. Benussi, O. Alfieri, R. Hong, W. Lau, K. Hirata, N. Shikuma, B. Hall, F. Morady, Atrioesophageal fistula as a complication of percutaneous transcatheter ablation of atrial fibrillation. Circulation 109, 2724–2726 (2004)CrossRefGoogle Scholar
  83. 83.
    J.J. Pérez, A. D’Avila, A. Aryana, E. Berjano, Electrical and thermal effects of esophageal temperature probes on radiofrequency catheter ablation of atrial fibrillation: results from a computational modeling study. J. Cardiovasc. Electrophysiol. 26, 556–564 (2015). doi:10.1111/jce.12630CrossRefGoogle Scholar
  84. 84.
    N. Pérez-Castellano, R. Fernandez-Cavazos, J. Moreno, V. Canadas, A. Conde, I.J. Gonzalez-Ferrer, C. Macaya, J. Perez-Villacastin, The COR trial: a randomized study with continuous rhythm monitoring to compare the efficacy of cryoenergy and radiofrequency for pulmonary vein isolation. Heart Rhythm 11, 8–14 (2013)CrossRefGoogle Scholar
  85. 85.
    J.L. Prevost, F. Batelli, La mort par Les décharges eléctriques. J. Physiol. 1, 1085–1099 (1899)Google Scholar
  86. 86.
    J.L. Prevost, F. Batelli, Sur quelques effets des décharges électriques sur le coeur des mammifères. Acad. Sci. Paris, FR. 129, 1267–1268 (1899)Google Scholar
  87. 87.
    E.N. Prystowsky, The history of atrial fibrillation: the last 100 years. J. Cardiovasc. Electrophysiol. 19(6), 575–582 (2008)CrossRefGoogle Scholar
  88. 88.
    F. Sacher, K. Roberts-Thomson, P. Maury, U. Tedrow, I. Nault, D. Steven, M. Hocini, B. Koplan, L. Leroux, N. Derval, J. Seiler, M.J. Wright, L. Epstein, M. Haässaguerre, P. Jais, W.G. Stevenson, Epicardial ventricular tachycardia ablation: a multicenter safety study. J. Am. Coll. Cardiol. 55(21), 2366–2372 (2010)CrossRefGoogle Scholar
  89. 89.
    D. Sánchez-Quintana, J.A. Cabrera, V. Climent, J. Farré, M.C. de Mendona, S. Yen Ho, Anatomic relations between the esophagus and left atrium and relevance for ablation of atrial fibrillation. Circulation 112, 1400–1405 (2005)CrossRefGoogle Scholar
  90. 90.
    D. Sánchez-Quintana, J.R. López-Mínguez, Y. Macías, J.A. Cabrera, F. Saremi, Left atrial anatomy relevant to catheter ablation. Cardiol. Res. Pract. 2014, Article ID 289720, 17 pp. (2014).
  91. 91.
    D. Sato, K. Teramoto, H. Kitajima, N. Nishina, Y. Kida, H. Mani, M. Esato, Y.H. Chun, T. Iwasaka, Measuring luminal esophageal temperature during pulmonary vein isolation of atrial fibrillation. World J. Cardiol. 4(5), 188–194 (2012)CrossRefGoogle Scholar
  92. 92.
    M.I. Scanavacca, A. D’Avila, J. Parga, E. Sosa, Left atrial-esophageal fistula following radiofrequency catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 15, 960–962 (2004)CrossRefGoogle Scholar
  93. 93.
    M.M. Scheinman, F. Morady, D.S. Hess, R. Gonzalez, Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA 248, 851–855 (1982)CrossRefGoogle Scholar
  94. 94.
    M. Schmidt, G. Nölker, H. Marschang, K.J. Gutleben, V. Schibgilla, H. Rittger, A.M. Sinha, G. Ritscher, D. Mayer, J. Brachmann, N.F. Marrouche, Incidence of oesophageal wall injury post-pulmonary vein antrum isolation for treatment of patients with atrial fibrillation. Europace 10, 205–209 (2008)CrossRefGoogle Scholar
  95. 95.
    H.A. Snellen, Willem Einthoven (1860–1927), Father of Electrocardiography: Life and Work, Ancestors and Contemporaries (Kluwer Academic, Dordrecht, 1995)CrossRefGoogle Scholar
  96. 96.
    H. Sohara, H. Takeda, H. Ueno, T. Oda, S. Satake, Feasibility of the radiofrequency hot balloon catheter for isolation of the posterior left atrium and pulmonary veins for the treatment of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2(3), 225–232 (2009)CrossRefGoogle Scholar
  97. 97.
    B. Sonmez, E. Demirsoy, N. Yagan, M. Unal, H. Arbatli, D. Sener, T. Baran, F. Ilkova, A fatal complication due to radiofrequency ablation for atrial fibrillation: atrio-esophageal fistula. Ann. Thorac. Surg. 76, 281–283 (2003)CrossRefGoogle Scholar
  98. 98.
    F. Stöckigt, J. Schrickel, R. Andrié, L. Lickfett, Atrioesophageal fistula after cryoballoon pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 23, 1254–1257 (2012)CrossRefGoogle Scholar
  99. 99.
    R. Sutton, J.D. Fisher, C. Linde, D.G. Benditt, History of electrical therapy for the heart. Eur. Heart J. Suppl. 9(Suppl. I), I3-I10 (2007)Google Scholar
  100. 100.
    A. Takahashi, T. Kuwahara, Y. Takahashi, Complications in the catheter ablation of atrial fibrillation: incidence and management. Circ. J. 73, 221–226 (2009)CrossRefGoogle Scholar
  101. 101.
    G.J. Trezek, Thermal analysis for cryosurgery, in Heat Transfer in Medicine and Biology, ed. by A. Shitzer, R.C. Eberhart, vol. 2, Chap. 6 (Springer, New York, 1985), pp. 239–259Google Scholar
  102. 102.
    Y. Van Belle, P. Janse, M.J. Rivero-Ayerza, A.S. Thornton, E.R. Jessurun, D. Theuns, L. Jordaens, Pulmonary vein isolation using an occluding cryoballoon for circumferential ablation: feasibility, complications, and short-term outcome. Eur. Heart J. 28(18), 2231–2237 (2007)CrossRefGoogle Scholar
  103. 103.
    Y. Van Belle, P. Janse, D. Theuns, T. Szili-Torok, L. Jordaens, One year follow-up after cryoballoon isolation of the pulmonary veins in patients with paroxysmal atrial fibrillation. Europace 10(11), 1271–1276 (2008)CrossRefGoogle Scholar
  104. 104.
    H. Von Ziemssen, Studien tiber die Bewegungsvorginge am menschlichen Herzen, sowie uiber die mechanische und elektrische Erregbarkeit des Herzens und des Nervus Phrenicus, angestellt an dem freiliegenden Herzen der Catharina Serafin. Dtsch. Arch. Clin. Med. 30, 270 (1882)Google Scholar
  105. 105.
    A.G. Waller, A demonstration on man of electromotive changes accompanying the hearts beat. J. Physiol. 8, 229–323 (1887)CrossRefGoogle Scholar
  106. 106.
    K. Yokoyama, H. Nakagawa, D.C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J.V. Pitha, T. Sharma, R. Lazzara, W.-M. Jackman, Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ. Arrhythm. Electrophysiol. 1, 354–362 (2008)CrossRefGoogle Scholar
  107. 107.
    K. Yokoyama, H. Nakagawa, K.A. Seres, E. Jung, J. Merino, Y. Zou, A. Ikeda, J.V. Pitha, R. Lazzara, W.M. Jackman, Canine model of esophageal injury and atrial-esophageal fistula after applications of forward-firing high-intensity focused ultrasound and side-firing unfocused ultrasound in the left atrium and inside the pulmonary vein. Circ. Arrhythm. Electrophysiol. 2, 41–49 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonio Fasano
    • 1
  • Adélia Sequeira
    • 2
  1. 1.Fabbrica Italiana Apparecchi Biomedicali (FIAB)Università degli Studi di FirenzeFirenzeItaly
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations