Advertisement

Hemomath pp 227-264 | Cite as

Blood and Heat Transfer

  • Antonio Fasano
  • Adélia Sequeira
Chapter
Part of the MS&A book series (MS&A, volume 18)

Abstract

Circulating blood has an important role in achieving tissues thermal equilibrium. Such an action has to be taken into account when modeling treatments involving the transfer of a substantial amount of heat. Warming up or cooling down parts of the body have become important procedures in many kinds of therapies, either in a relatively mild form or by raising or lowering the temperature of targeted tissues to extreme values with the purpose of inducing massive cells destruction (ablation). Heat can be delivered in various ways (radio frequency sources, laser, focused ultrasounds), while cryoablation is performed by means of tips or balloons in which a very cold gas is circulated. In all such procedures it is very important to predict the thermal field generated in order to confine tissue damage to the targeted area. In this chapter we will examine models that have been formulated with this aim for various treatments involving heat transfer within the body. Of course we will also describe the corresponding clinical background.

References

  1. 1.
    P. Adler, M. Lynch, K. Katz, J.M. Lyons, J. Ochoa, C. King, Hypothermia: an unusual indication for gastric lavage. J. Emerg. Med. 40(2), 176–178 (2009)CrossRefGoogle Scholar
  2. 2.
    S.A. Aghayan, D. Sardari, S.R.M. Mahdavi, M.H. Zahmatkesh, An inverse problem of temperature optimization in hyperthermia by controlling the overall heat transfer coefficient. J. Appl. Math. 2013, 1–9 (2013). Article ID 734020. http://dx.doi.org/10.1155/2013/734020
  3. 3.
    A.G. Alzaga, G.A. Salazar, J. Varon, Breaking the thermal barrier: Dr. Temple Fay. Resuscitation 69, 359–364 (2006)CrossRefGoogle Scholar
  4. 4.
    L. Ambrosio, P.A. Netti, P.A. Revell, Soft tissue, in Integrated Biomaterials Science, ed. by R. Barbucci, chap. 10 (Kluwer Academic/Plenum Publishers, New York, NY, 2002), pp. 347–366Google Scholar
  5. 5.
    H. Arkin, L.X. Xu, K.R. Holmes, Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans. Biomed. Eng. 41, 97–107 (1994)CrossRefGoogle Scholar
  6. 6.
    G.F. Baronzio, E.D. Hager (eds.), Hyperthermia in cancer treatment: a primer, in Medical Intelligence Unit. Landes Bioscience and Springer Science+Business Media, LLC (Springer, New York, 2006)Google Scholar
  7. 7.
    R. Barauskas, A. Gulbinas, G. Barauskas, Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina (Kaunas) 43(4), 310–325 (2007)Google Scholar
  8. 8.
    L.T. Baxter, R.K. Jain, Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 37(1), 77–104 (1989)Google Scholar
  9. 9.
    S.A. Bernard, K. Smith, P. Cameron, K. Masci, D.M. Taylor, D.J. Cooper, A.M. Kelly, W. Silvester, Rapid Infusion of Cold Hartmanns (RICH) Investigators. Induction of therapeutic hypothermia by paramedics after resuscitation from out-of-hospital ventricular fibrillation cardiac arrest: a randomized controlled trial. Circulation 122, 737–742 (2010)Google Scholar
  10. 10.
    A. Bhowmik, R. Singh, R. Repaka, S.C. Mishra, Conventional and newly developed bioheat transport models in vascularized tissues: a review. J. Thermal Biol. 38, 107–125 (2013).CrossRefGoogle Scholar
  11. 11.
    W.G. Bigelow, J.C. Callaghan, J.A. Hopps, General hypothermia for experimental intracardiac surgery. Ann. Surg. 132, 531–539 (1950)CrossRefGoogle Scholar
  12. 12.
    H.F. Bowman, Heat transfer mechanisms and thermal dosimetry. Natl. Cancer Inst. Monogr. 61, 437–445 (1982)Google Scholar
  13. 13.
    A. Burgess, Y. Huang, A.C. Waspe, M. Ganguly, D.E. Goertz, K. Hynynen, High-Intensity Focused Ultrasound (HIFU) for dissolution of clots in a rabbit model of embolic stroke. PLoS ONE 7, e42311 (2012)CrossRefGoogle Scholar
  14. 14.
    J.R. Cannon, The One-Dimensional Heat Equation. Encyclopedia of Mathematics and Its Applications, vol. 23 (Cambridge University Press, Cambridge, 1984)Google Scholar
  15. 15.
    A. Carovac, F. Smajlovic, D. Junuzovic, Application of ultrasound in medicine. Arch. Iran. Med. 19(3), 168–171 (2011)Google Scholar
  16. 16.
    I.A. Chang, Considerations for thermal injury analysis for RF ablation devices. Open Biomed. Eng. J. 4, 3–12 (2010)Google Scholar
  17. 17.
    J.C. Chato, Heat transfer in bioengineering, in Advanced Heat Transfer, ed. by B.T. Chao (University of Illinois Press, Urbana, 1969), pp. 404–412Google Scholar
  18. 18.
    M.S. Chatterjee, W.S. Denney, H. Jing, S.L. Diamond, System biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Comp. Biol. 6(9), 1–23 (2010)CrossRefGoogle Scholar
  19. 19.
    M.M. Chen, K.R. Holmes, Microvascular contributions in tissue heat transfer. Ann. N. Y. Acad. Sci. 335, 137–150 (1980)CrossRefGoogle Scholar
  20. 20.
    X. Chen, D. Cvetkovic, C.M. Ma, L. Chen, Quantitative study of focused ultrasound enhanced doxorubicin delivery to prostate tumor in vivo with MRI guidance. Med. Phys. 39, 2780–2786 (2012)CrossRefGoogle Scholar
  21. 21.
    K.S. Cheng, R.B. Roemer, Optimal power deposition patterns for ideal high temperature therapy/hyperthermia treatments. Int. J. Hyperth. 20, 57–72 (2004)CrossRefGoogle Scholar
  22. 22.
    K.S. Cheng, V. Stakhursky, P. Stauffer, M. Dewhirst, S.K. Das, Online feedback focusing algorithm for hyperthermia cancer treatment. Int. J. Hyperth. 23(7), 539–554 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Cheong, P. Ferguson, I.F. Hermans, G.N.L. Jameson, S. Prabakar, D.A.J. Herman, R.D. Tilley, Synthesis and stability of high cristalline stable iron/iron oxide core/shell nanoparticles for biomedical applications. ChemPlusChem 7, 135–140 (2012)CrossRefGoogle Scholar
  24. 24.
    J.O. Creech, E.T. Krementz, R.F. Ryan et al., Chemotherapy of cancer: regional perfusion utilizing an extracorporeal circuit. Ann. Surg. 148, 616–632 (1958)CrossRefGoogle Scholar
  25. 25.
    J.O. Creech, E.T. Krementz, R.F. Ryan et al., Experiences with isolation-perfusion techniques in the treatment of cancer. Ann. Surg. 149, 627–639 (1959)CrossRefGoogle Scholar
  26. 26.
    S.A. Curley, Radiofrequency ablation of malignant liver tumors. Ann. Surg. Oncol. 10(4), 338–347 (2003)CrossRefGoogle Scholar
  27. 27.
    C.R. Davies, G.M. Saidel, H. Harasaki, Sensitivity analysis of one-dimensional heat transfer in tissue with temperature-dependent perfusion. J. Biomech. Eng. 119(1), 77–80 (1997)CrossRefGoogle Scholar
  28. 28.
    P. Deuflhard, M. Seebass, D. Stalling, R. Beck, H.C. Hege, Hyperthermia treatment planning in clinical cancer therapy: Modelling, simulation, and visualization, in Proceedings 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, ed. by A. Sydow (1997)Google Scholar
  29. 29.
    P. Deuflhard, A. Schiela, M. Weiser, Mathematical cancer therapy planning in deep regional hyperthermia. ZIB-Report 11–39 (2011)Google Scholar
  30. 30.
    W.C. Dewey, Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperth. 25, 3–20 (2009)CrossRefGoogle Scholar
  31. 31.
    W.C. Dewey, L.E. Hopwood, S.A. Sapareto, L.E. Gerweck, Cellular responses to combinations of hyperthermia and radiation. Radiology 123, 463–474 (1977)CrossRefGoogle Scholar
  32. 32.
    M.W. Dewhirst, B.L. Viglianti, M. Lora-Michiels, M. Hanson, P.J. Hoopes, Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperth. 19(3), 267–294 (2003)CrossRefGoogle Scholar
  33. 33.
    M.W. Dewhirst, Z. Vujaskovic, E. Jones, D. Thrall, Re-setting the biologic rationale for thermal therapy. Int. J. Hyperth. 21(8), 779–790 (2005)CrossRefGoogle Scholar
  34. 34.
    M.W. Dewhirst, P. Stauffer, Z. Vujaskovic, C.D. Landon, L.R. Prosnitz, Hyperthermia as a treatment modality, in Perez and Brady’s Principles and Practice of Radiation Oncology, 6th edn., ed. by C.A. Perez, E.C. Halperin, L.W. Brady, D.E. Wazer, chap. 31 (Kluwer, Dordrecht, 2013)Google Scholar
  35. 35.
    M.A. Díaz de la Rosa, G.A. Husseini, W.G. Pitt, Mathematical modeling of microbubble cavitation at 70 kHz and the importance of the subharmonic in drug delivery from micelles. Ultrasonics 53(1), 97–110 (2013)CrossRefGoogle Scholar
  36. 36.
    K.R. Diller, Analysis of skin burns, in Heat Transfer in Medicine and Biology, ed. by A. Shitzer, et al., chap. 3 (Plenum Press, New York, NY, 1985), pp. 85–134Google Scholar
  37. 37.
    K.R. Diller, Fundamentals of bio-heat transfer, in Physics of Thermal Therapy: Fundamentals and Clinical Applications, ed. by E.G. Moros, chap. 1 (CRC Press, Boca Raton, 2012), pp. 3–22Google Scholar
  38. 38.
    K.R. Diller, G.A. Klutke, Accuracy analysis of the Henriques model for predicting thermal burn injury, in Advances in Bioheat and Mass Transfer Volume HTD 268: ASME Heat Transfer Division (1993), pp. 117–123Google Scholar
  39. 39.
    K.R. Diller, J.W. Valvano, J.A. Pearce, Bioheat tranfer, in The CRC Book of Mechanical Engineering, 2nd edn., ed. by F. Kreith, D.Y. Goswami, chap. 4, sect. 4.10 (CRC Press, Boca Raton, 2004)Google Scholar
  40. 40.
    K.R. Diller, J.W. Valvano, J.A. Pearce, Bioheat tranfer, in The CRC Handbook of Thermal Engineering, ed. by F. Kreith, chap. 4, sect. 4.4 (CRC Press, Boca Raton, 2009)Google Scholar
  41. 41.
    T.J. Dubinsky, C. Cuevas, M.K. Dighe, O. Kolokythas, J.H. Hwang, High-intensity focused ultrasound: current potential and oncologic applications. Am. J. Roentgenol. 190, 191–199 (2008)CrossRefGoogle Scholar
  42. 42.
    M.J. English, R. Papenberg, E. Farias, W.A. Scott, J. Hinchey. Heat loss in an animal experimental model. J. Trauma 31(1), 36–38 (1991)CrossRefGoogle Scholar
  43. 43.
    J. Esquivel, A. Averbach, Laparoscopic cytoreductive surgery and HIPEC in patients with limited pseudomyxoma peritonei of appendiceal origin. Gastroenterol. Res. Pract. 2012, 5pp. (2012). Article ID 981245Google Scholar
  44. 44.
    T.J. Farrell, M.S. Patterson, B. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19(4), 879–888 (1992)CrossRefGoogle Scholar
  45. 45.
    A. Fasano, A. Mancini, A phenomenon of waiting time in phase change problems driven by radiative heat transfer. Math. Meth. Appl. Sci. 32(9), 1105–1117 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Fasano, A. Mancini, Modelling the onset of vaporization in frying processes with no mechanical deformation. J. Food Process Eng. 33, 48–65 (2010)CrossRefGoogle Scholar
  47. 47.
    A. Fasano, D. Hoemberg, D. Naumov, A mathematical model for laser induced thermotherapy. Appl. Math. Model. 34, 3831–3840 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Fasano, A. Mancini, M. Primicerio, B. Zaltzman, Waiting time phenomena forced by critical boundary conditions in classical diffusion problems. Q. Appl. Math. 69(1), 105–122 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    D. Fiala, K.J. Lomas, M. Stohrer, A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J. Appl. Physiol. 87, 1957–1972 (1999)Google Scholar
  50. 50.
    D. Fiala, K.J. Lomas, M. Stohrer, Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int. J. Biometeorol. 45, 143–159 (2001)CrossRefGoogle Scholar
  51. 51.
    S.B. Field, C.C. Morris, The relationship between heating time and temperature: its relevance to clinical hyperthermia. Radiother. Oncol. 1, 179–186 (1983)CrossRefGoogle Scholar
  52. 52.
    W.J. Fry, J.W. Barnard, E.J. Fry, R.F. Krumins, J.F. Brennan, Ultrasonic lesions in the mammalian central nervous system. Science 122, 517–518 (1955)CrossRefGoogle Scholar
  53. 53.
    P. Gas, Essential facts on the history of hyperthermia and their connections with electromedicine. Przeglad elektrotechniczny (electrical review). R. 87 NR 12b, 37–40 (2011). ISSN 0033–2097Google Scholar
  54. 54.
    F.S. Gayzik, E.P. Scott, T. Loulou, Optimal control of thermal damage to targetted regions in a biological material, in ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, vol. 4 (2004), pp. 733–736. ISBN: 0-7918-4693-8Google Scholar
  55. 55.
    F.S. Gayzik, E.P. Scott, T. Loulou, Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments. J. Biomech. Eng. 128, 505–515 (2006)CrossRefGoogle Scholar
  56. 56.
    H.Y. Ge, L.Y. Miao, L.L. Xiong, F. Yan, C.S. Zheng, J.R. Wang, J.W. Jia, L.G. Cui, W. Chen, High-intensity focused ultrasound treatment of late-stage pancreatic body carcinoma: optimal tumor depth for safe ablation. Ultrasound Med. Biol. 40(5), 947–955 (2014)CrossRefGoogle Scholar
  57. 57.
    F. González-Ibarra, J. Varon, E.G. López-Meza, Therapeutic hypothermia: critical review of the molecular mechanisms of action. Front. Neurol. 2 (2011). doi: 10.3389/fneur.2011.00004Google Scholar
  58. 58.
    T.R. Gowrishankar, D.A. Stewart, G.T. Martin, J.C. Weaver, Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion. Biomed. Eng. Line 3(4), 1–17 (2004)Google Scholar
  59. 59.
    D. Haemmerich, Mathematical modeling of impedance controlled radiofrequency tumor ablation and ex-vivo validation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 1605–1608 (2010)Google Scholar
  60. 60.
    K.-U. Hanusch, C.H. Janssen, D. Billheimer, I. Jenkins, E. Spurgeon, C.A. Lowry, C.L. Raison, Whole-body hyperthermia for the treatment of major depression: associations with thermoregulatory cooling. Am. J. Psychiatry 170, 802–804 (2013)CrossRefGoogle Scholar
  61. 61.
    F.C. Henriques Jr., Studies of thermal injury: the Predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol. 43, 489–502 (1947)Google Scholar
  62. 62.
    S. Herrero, J. Varon, G.L. Sternbach, R.E. Fromm, History of the cardiopulmonary resuscitation. Pearls in intensive care medicine, vol. 25 (2012)Google Scholar
  63. 63.
    J.R. Hess, K. Brohi, R.P. Dutton, C.J. Hauser, J.B. Holcomb, Y. Kluger, K. Mackway-Jones, M.J. Parr, S.B. Rizoli, T. Yukioka, D.B. Hoyt, B. Bouillon, The coagulopathy of trauma: a review of mechanisms. J. Trauma 65, 748–754 (2008)CrossRefGoogle Scholar
  64. 64.
    B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002)CrossRefGoogle Scholar
  65. 65.
    G.R. Hill, Optimum acoustic frequency for focused ultrasound surgery. Ultrasound Med. Biol. 20, 271–277 (1994)CrossRefGoogle Scholar
  66. 66.
    K.R. Holmes, Thermal conductivities of selected tissues, in Biotransport: Heat and Mass Transfer in Selected Tissues, ed. by K.R. Diller (New York Academy of Sciences, New York, NY, 1998)Google Scholar
  67. 67.
    H.-W. Huang, C.-T. Liauh, Review: therapeutical applications of heat in cancer therapy. J. Med. Biol. Eng. 32(1), 1–11 (2011)CrossRefGoogle Scholar
  68. 68.
    K. Hynynen, D. De Young, M. Kundrat, E. Moros, The effect of blood perfusion rate on the temperature distributions induced by multiple, scanned and focused ultrasonic beams in dogs kidneys in vivo. Int. J. Hyperth. 5(4), 485–497 (1989)CrossRefGoogle Scholar
  69. 69.
    C. Iancu, L. Mocan, Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia. Int. J. Nanomed. 6, 1675–1684 (2011)CrossRefGoogle Scholar
  70. 70.
    L. Irving, Metabolic supply of heat , in Arctic Life of Birds and Mammals. Zoophysiology and Ecology, vol.2 (Springer, Berlin, 1972), pp.114–136Google Scholar
  71. 71.
    A. Ishimaru, Waves Propagation and Scattering in Random Media, vol. I (Academic, New York, 1978)zbMATHGoogle Scholar
  72. 72.
    R.K. Jain, Analysis of heat transfer and temperature distributions in tissues during local and whole-body hyperthermia, in Heat Transfer in Medicine and Biology ed. by A. Shitzer, R.C. Eberhart, chap. 1, 3–54, vol. 2 (Springer, Berlin, 1985)Google Scholar
  73. 73.
    R.K. Jain, Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–65 (1994)CrossRefGoogle Scholar
  74. 74.
    L.M. Jiji, Heat Conduction, 3rd edn. (Springer, Berlin, 2009). ISBN 978-3-642-01266-2zbMATHCrossRefGoogle Scholar
  75. 75.
    C.D. Kaddi, J.H. Phan, M.D. Wang, Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy. Nanomedicine 8, 1323–1333 (2013)CrossRefGoogle Scholar
  76. 76.
    B. Kaltenbacher, I. Lasiecka, Well-posedness of the Westervelt and the Kutznetsov equation with nonhomogeneous Neumann boundary conditions. Discrete Contin. Dyn. Syst. 2011(Suppl.) 763–773 (2011)Google Scholar
  77. 77.
    L.V. Karnatovskaia, K.E. Wartenberg, W.D. Freeman, Therapeutic hypothermia for neuroprotection. history, mechanisms, risks, and clinical applications. Neurohospitalist 4(3), 153–163 (2014)Google Scholar
  78. 78.
    J.B. Keller, M. Miksis, Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68(2), 628633 (1980)Google Scholar
  79. 79.
    K.H. Keller, L. Seilder, An analysis of peripheral heat transfer in man. J. Appl. Physiol. 30, 779–789 (1971)Google Scholar
  80. 80.
    E. Kengne, A. Lakhssassi, R. Vaillancourt, Temperature distributions for regional hypothermia based on nonlinear bioheat equation of Pennes type: dermis and subcutaneous tissues. Appl. Math. 3, 217–224 (2012)MathSciNetCrossRefGoogle Scholar
  81. 81.
    K. Khanafer, K. Vafai, Synthesis of mathematical models representing bioheat transport, in Advances in Numerical Heat Transfer, ed. by W.J. Minkowycz, E.M. Sparrow, chap. 1, vol. 3 (CRC Press, Boca Raton, 2009), pp. 1–28Google Scholar
  82. 82.
    T. Kheirbek, A.R. Kochanek, H.B. Alam, Hypothermia in bleeding trauma: a friend or a foe? Scand. J. Trauma Resusc. Emerg. Med. 17–65 (2009). doi:10.1186/1757-7241-17-65Google Scholar
  83. 83.
    R. Kleef, E.D. Hager, Fever, pyrogens and cancer, in Hyperthermia in Cancer Treatment: A Primer. ed, by G.F. Baronzio, E.D. Hager. Medical Intelligence Unit, chap. 21. Landes Bioscience and Springer Science+Business Media, LLC (Springer, Berlin, 2006), pp. 278–337Google Scholar
  84. 84.
    H.G. Klinger, Heat transfer in perfused biological tissue. II. The “macroscopic” temperature distribution in tissue. Bull. Math. Biol. 40(2), 183–199 (1978)Google Scholar
  85. 85.
    H.P. Kok, J. Gellermann, C.A.T. van den Berg, P.R. Stauffer, J.W. Hand, J. Crezee, Thermal modeling using a discrete vasculature for thermal therapy: a review. Int. J. Hyperth. 29(4), 336–345 (2013)CrossRefGoogle Scholar
  86. 86.
    A.N.T.J. Kotte, G.M.J. van Leeuwen, J.J. Lagendijk, Modelling the thermal impact of a discrete vessel tree. Phys. Med. Biol. 44, 57–74 (1999)CrossRefGoogle Scholar
  87. 87.
    J. Kremer, A.K. Louis, On the mathematical foundations of hyperthermia therapy. Math. Methods Appl. Sci. 13, 467–479 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  88. 88.
    V.P. Kuznetsov, On spectral methods for solving nonlinear acoustics equations. Acoust. Phys. 69, 281–285 (2013)CrossRefGoogle Scholar
  89. 89.
    J.J.W. Lagendijk, Hyperthermia treatment planning. Phys. Med. Biol. 45(5), R61–76 (2000)CrossRefGoogle Scholar
  90. 90.
    J.J. Lagendijk, M. Schellekens, J. Schipper, P.M. van der Linden, A three-dimensional description of heating patterns in vascularized tissues during hyperthermic treatment. Phys. Mad. Biol. 29, 495–507 (1984)CrossRefGoogle Scholar
  91. 91.
    J.J. Lagendijk, P.M. Van den Berg, J. Bach Andersen, J.W. Hand, F. Bardati, N.K. Uzunoglu et al., (eds.), Treatment planning and modelling in hyperthermia: a task group report. Rome: Tor Vergata, Postgraduate School of Medical Physics, II Universiy of Rome (1992)Google Scholar
  92. 92.
    A. Lakhssassi, E. Kengne, H. Semmaoui, Modifed Pennes’ equation modelling bio-heat transfer in living tissues: analytical and numerical analysis. Nat. Sci. 2, 1375–1385 (2010)Google Scholar
  93. 93.
    J. Lang, B. Erdmann, M. Seebass, Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans. Biomed. Eng. 46(9), 1129–1138 (1999)CrossRefGoogle Scholar
  94. 94.
    S. Laurent, S. Dutz, U.O. Hafeli, M. Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166(1–2), 8–23 (2011)CrossRefGoogle Scholar
  95. 95.
    H.H. LeVeen, N. Ahmed, V.A. Piccone, S. Shugaar, G. Falk, Radiofrequency therapy: clinical experience. Ann. N. Y. Acad. Sci. 335, 362–371 (1980)CrossRefGoogle Scholar
  96. 96.
    F.J. Lewis, M. Taufic, Closure of atrial septal defects with the aid of hypothermia; experimental accomplishments and the report of one successful case. Surgery 33, 5–59 (1953)Google Scholar
  97. 97.
    H. Lier, H. Krep, S. Schroeder, F. Stuber, Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma 65, 951–960 (2008)Google Scholar
  98. 98.
    W.L. Lin, Y.Y. Chen, S.Y. Lin, M.J. Shieh, T.S. Kuo, Optimal configuration of multiple-focused ultrasound transducers for external hyperthermia. Med. Phys. 26, 2007–2016 (1999)CrossRefGoogle Scholar
  99. 99.
    P.A. Lindstrom, Prefrontal ultrasonic irradiation: a substitute for lobotomy. Arch. Neurol. Psychiatr. 72, 399–425 (1954)CrossRefGoogle Scholar
  100. 100.
    Y. Lu, J. Katz, A. Prosperetti, Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam. Phys. Fluids 25(7), 073301–073317 (2013)CrossRefGoogle Scholar
  101. 101.
    J.G. Lynn, R.L. Zwemer, A.J. Chick, A.E. Miller, A new method for the generation and use of focused ultrasound in experimental biology. J. Gen. Physiol. 26, 179–193 (1942)CrossRefGoogle Scholar
  102. 102.
    G.T. Martin, H.F. Bowman, Validation of real-time continuous perfusion measurement. Med. Biol. Eng. Comput. 38, 319–325 (2000)CrossRefGoogle Scholar
  103. 103.
    T. Matsuda (ed.), Cancer Treatment by Hyperthermia, Radiation and Drugs (Taylor & Francis Ltd., London, Bristol, PA, 1993)Google Scholar
  104. 104.
    A.Y. Mitrophanov, F.R. Rosendaal, J. Reifman, Computational analysis of the effects of reduced temperature on thrombin generation: the contributions of hypothermia to coagulopathy. Anesth. Analg. 117, 565–574 (2013)CrossRefGoogle Scholar
  105. 105.
    J. Mooibroek, J.J. Lagendijk, A fast and simple algorithm for the calculation of convective heat transfer by large vessels in inhomogeneous tissues. IEEE Trans. Biomed. Eng. 38, 490–501 (1991)CrossRefGoogle Scholar
  106. 106.
    D. Moreno-Ramirez, L. de la Cruz-Merino, L. Ferrandiz, L. Villegas-Portero, A. Nieto-Garcia, Isolated limb perfusion for malignant melanoma: systematic review on effectiveness and safety. Oncologist 15, 416–427 (2010)CrossRefGoogle Scholar
  107. 107.
    A.R. Moritz, F.C. Henriques, Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. Am. J. Pathol. 23(5), 531–549 (1947)Google Scholar
  108. 108.
    A.R. Moritz, F.C. Henriques, Studies of thermal injury: II. The Relative importance of time and surface temperature in the causation of cutaneous burns. Am. J. Pathol. 23(5), 695–720 (1947)Google Scholar
  109. 109.
    E.G. Moros (ed.), Physics of Thermal Therapy: Fundamentals and Clinical Applications (CRC Press, Boca Raton, 2013)Google Scholar
  110. 110.
    V.C. Mow, J.S. Hou, J.M. Owens, A. Ratcliffe, Biphasic and quasilinear viscoelastic theories for hydrated soft tissues, in Biomechanics of Diarthrodial Joints, ed. by A. Ratcliffe, S.L-Y. Woo, V.C. Mow, vol. 1 (Springer, New York, 1990), pp. 215–260Google Scholar
  111. 111.
    K.F. Nagelschmidt, Ueber Diathermie (Transthermie, Thermopenetration) - München, J.F. Lehmann (1909), pp.2575–2576Google Scholar
  112. 112.
    A. Nakayama, F. Kuwahara, W. Liu, A general set of bioheat transfer equations based on the volume averaging theory, in Porous Media: Applications in Biological Systems and Biotechnology, ed. by K. Vafai, chap. 1 (CRC Press, Boca Raton, 2011), pp. 1–44Google Scholar
  113. 113.
    D.A. Nelson, Pennes’ 1948 paper revisited. Invited editorial. J. Appl. Physiol. 85, 2–3 (1998)Google Scholar
  114. 114.
    P.A. Netti, L.T. Baxter, Y. Boucher, R. Skalak, R.K. Jain, Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery Cancer Res. 55, 5451–5458 (1995)Google Scholar
  115. 115.
    M. Niemz, Laser-Tissue Interactions, Fundamentals and Applications (Springer, Berlin, 2002)zbMATHCrossRefGoogle Scholar
  116. 116.
    K.B. Ocheltree, L.A. Frizzell, Determination of power deposition patterns for localized hyperthermia: a steady-state analysis. Int. J. Hyperth. 3, 269–279 (1987)CrossRefGoogle Scholar
  117. 117.
    K.B. Ocheltree, L.A. Frizzell, Determination of power deposition patterns for localized hyperthermia: a transient analysis. Int. J. Hyperth. 4, 281–296 (1988)CrossRefGoogle Scholar
  118. 118.
    K. Okita, K. Sugiyama, S. Takagi, Y. Matsumto, Microbubble behavior in an ultrasound field for high intensity focused ultrasound therapy enhancement. J. Acoust. Soc. Am. 134(2), 1576–1585 (2013)CrossRefGoogle Scholar
  119. 119.
    N. Papavramidou, T. Papavramidis, T. Demetriou, Ancient greek and greco-roman methods in modern surgical treatment of cancer. Ann. Surg. Oncol. 17(3), 665–667 (2010)CrossRefGoogle Scholar
  120. 120.
    M.M. Paulides, P.R. Stauffer, E. Neufeld, P. Maccarini, A. Kyriakou, R.A.M. Canters, C. Diederich, J.F. Bakker, G.C. Van Rhoon, Simulation techniques in hyperthermia treatment planning. Int. J. Hyperth. 29(4), 346–357 (2013)CrossRefGoogle Scholar
  121. 121.
    K.D. Paulsen, S. Geimer, J. Tang, W.E. Boyse, Optimization of pelvic heating rate distributions with electromagnetic phased arrays. Int. J. Hyperth. 15(3), 157–186 (1999)CrossRefGoogle Scholar
  122. 122.
    J.A. Pearce, Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose, in Proceedings of SPIE 7181, Energy-based Treatment of Tissue and Assessment V, 7181 (2009). Article ID: 718104. doi:10.1117/12.807999Google Scholar
  123. 123.
    J.A. Pearce, Mathematical models of laser-induced tissue thermal damage. Int. J. Hyperth. 27, 741–750 (2011)CrossRefGoogle Scholar
  124. 124.
    J.A. Pearce, S. Thomsen, Kinetic models of tissue fusion processes, in Proceedings of Laser Surgery (SPIE): Advanced Characterization, Therapeutics, and Systems III (1992), pp. 251–260Google Scholar
  125. 125.
    H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting forearm. J. Appl. Physiol. 1, 93–122 (1948)Google Scholar
  126. 126.
    C.A. Pérez, B. Emami, G. Nussbaum, S. Sapareto, Hyperthermia, in Principles and Practice of Radiation Oncology, ed. by C.A. Pérez, L.W. Brady, chap. 15 (Kluwer, Dordrecht, 1987)Google Scholar
  127. 127.
    M. Pop, S.R.H. Davidson, M. Gertner, M.A.S. Jewett, M.D. Sherar, M.C. Kolios, A theoretical model for RF ablation of kidney tissue and its experimental validation, in Biomedical Simulation: ISBMS. Lecture Notes on Computer Science, ed. by F. Bello, S. Cotin, vol. 5958 (Springer, Berlin, 2010), pp. 119–129Google Scholar
  128. 128.
    R.S. Pozos, Nazi hypothermia research: Should the data be used? Office of The Surgeon General, Department of the Army, USA, 437–461 (2003)Google Scholar
  129. 129.
    Z. Qin, S.K. Balasubramanian, W.F. Wolkers, J.A. Pearce, J.C. Bischof, Correlated parameter fit of Arrhenius model for thermal denaturation of proteins and cells. Ann. Biomed. Eng. 42(12), 2392–2404 (2014)CrossRefGoogle Scholar
  130. 130.
    K.R. Rajagopal, L. Tao, Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences, vol. 35 (World Scientific Publishing Co., Singapore 1995)Google Scholar
  131. 131.
    J.E. Robinson, G.H. Harrison, W.A. Mcready, G.M. Samaras, Good thermal dosimetry is essential to good hyperthermia research. Br. J. Radiol. 51, 532–534 (1978)CrossRefGoogle Scholar
  132. 132.
    J.E. Robinson, M.J. Wizenbekg, W.A. Mcready, Combined hyperthermia and radiation, an alternative to heavy particle radiation for reduced oxygen enhancement ratios. Nature 251, 521–522 (1974)CrossRefGoogle Scholar
  133. 133.
    R.B. Roemer, Optimal power deposition in hyperthermia. I. The treatment goal: the ideal temperature distribution: the role of large blood vessels. Int. J. Hyperth. 7, 317–341 (1991)Google Scholar
  134. 134.
    R.B. Roemer, T.C. Cetas, Applications of bioheat transfer simulations in hyperthermia. Cancer Res. 44(Suppl.), 4788s-4798s (1984)Google Scholar
  135. 135.
    W. Roetzel, Y. Xuan, Transient response of the human limb to an external stimulus. Int. J. Heat Mass Transf. 41, 229–239 (1998)zbMATHCrossRefGoogle Scholar
  136. 136.
    A. Roggan, Dosimetrie thermischer Laseranwendungen in der Medizin: Untersuchung der speziellen Gewebeeigenschaften und physikalischmathematische Modellbildung. Fortschritte in der Lasermedizin, vol. 16, Huthig Jehle Rehm, Landsberg/Lech (1997)Google Scholar
  137. 137.
    R.J. Roselli, K.R. Diller, General microscopic approach for bioheat transport, in Biotransport: Principles and Applications, ed. by R.J. Roselli, K.R. Diller, chap. 1 (Springer, Berlin, 2011), pp. 723–785Google Scholar
  138. 138.
    A. Rozanova-Pierrat, Mathematical analysis of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. < hal-00112147 > (2006)Google Scholar
  139. 139.
    M. Rybiński, Z. Szymańska, S. Lasota, A. Gambin, Modelling the efficacy of hyperthermia treatment. J. R. Soc. Interface 10, 20130527 (2013). http://dx.doi.org/10.1098/rsif.2013.0527 CrossRefGoogle Scholar
  140. 140.
    M.R. Rylander, Y. Feng, K. Zimmermann, K.R. Diller, Measurement and mathematical modeling of thermally induced injury and heat shock protein expression kinetics in normal and cancerous prostate cells. Int. J. Hyperth. 26(8), 748–764 (2010)CrossRefGoogle Scholar
  141. 141.
    P. Saccomandi, E. Schena, S. Silvestri, Techniques for temperature monitoring during laser-induced thermotherapy: an overview. Int. J. Hyperth. 29, 609–619 (2013)CrossRefGoogle Scholar
  142. 142.
    S.A. Sapareto, W.C. Dewey, Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 10, 787–800 (1984)CrossRefGoogle Scholar
  143. 143.
    D. Sardari, N. Verga, Cancer treatment with hyperthermia, in Current Cancer Treatment - Novel Beyond Conventional Approaches, ed. by O. Ozdemir, chap. 21 (2011) (InTech, Istanbul, 2011). ISBN: 978-953-307-397-2Google Scholar
  144. 144.
    E. Sassaroli, B.E. O’Neill, Lowering of the interstitial fluid pressure as a result of tissue compliance changes during high intensity focused ultrasound exposure: Insights from a numerical model. Phys. Med. Biol. 59(22), 6775 (2014)Google Scholar
  145. 145.
    F. Sassaroli, B.E. O’Neill, Modulation of the interstitial fluid pressure by high intensity focused ultrasound as a way to alter local fluid and solute movement: insights from a mathematical model. Phys. Med. Biol. 59(22), 6775–6795 (2014)CrossRefGoogle Scholar
  146. 146.
    E. Sassaroli, K.C.P. Li, B.E. O’Neill, Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications. Phys. Med. Biol. 54(18), 5541–5560 (2009)CrossRefGoogle Scholar
  147. 147.
    E. Sassaroli, K.P.C. Li, B.R. O’Neill, Modeling focused ultrasound exposure for the optimal control of thermal dose distribution. Sci. World J. 11 pp. (2012). Article ID 252741Google Scholar
  148. 148.
    M. Seebass, R. Beck, J. Gellermann, J. Nadobny, P. Wust. Electromagnetic phased arrays for regional hyperthermia: optimal frequency and antenna arrangement. Int. J. Hyperth. 17, 321–366 (2001)CrossRefGoogle Scholar
  149. 149.
    M.H. Seegenschmiedt, P. Fessenden, C.C. Vernon, Thermoradiotherapy and Thermochemotherapy. Volume 1: Biology, Physiology and Physics (Springer, Berlin, 1995)Google Scholar
  150. 150.
    G. Shafirstein, Y. Feng, The role of mathematical modeling in thermal medicine. Int. J. Hyperth. 29(4), 259–261 (2013)CrossRefGoogle Scholar
  151. 151.
    L. Shargel, A.B.C. Yu, Applied Biopharmaceutics and Pharmacokinetics, 2nd edn. (Appleton- Century- Croft, Norwalk, CT, 1985)Google Scholar
  152. 152.
    W. Shen, J. Zhang, F. Yang, Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. Math. Comput. Model. 41, 1251–1265 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  153. 153.
    A. Shitzer, R.C. Eberhart (eds.), Heat Transfer in Medicine and Biology, vol. 2 (Springer, Berlin, 1985)Google Scholar
  154. 154.
    I.S. Singh, J.D. Hasday, Fever, hyperthermia and the heat shock response. Int. J. Hyperth. 29, 423–435 (2013)CrossRefGoogle Scholar
  155. 155.
    M.A. Solovchuk, T.W.H. Sheu, M. Thiriet, Image-based computational model for focused ultrasound ablation of liver tumor. J. Comput. Surg. 1, 4 (2014). doi:10.1186/2194-3990-1-4CrossRefGoogle Scholar
  156. 156.
    J.S. Spratt, R.A. Adcock, M. Muskovin. Clinical delivery system for intraperitoneal hyperthermic chemotherapy. Cancer Res. 40(2), 256–260 (1980)Google Scholar
  157. 157.
    R.J. Stafford, D. Fuentes, A.A. Elliott, J.S. Weinberg, K. Ahrar, Laser-induced thermal therapy for tumor ablation. Crit. Rev. Biomed. Eng. 38(1), 79–100 (2010)CrossRefGoogle Scholar
  158. 158.
    R.J. Stafford, B.A. Taylor, Practical clinical thermometry, in Physics of Thermal Therapy: Fundamentals and Clinical Applications, ed. by E.G. Moros, chap. 3 (CRC Press, Boca Raton, 2012), pp. 41–55Google Scholar
  159. 159.
    J. Stolwijk, A mathematical model of physiological temperature regulation in man. Nasa Contractor Report cr-1855. Washington, DC, NASA (1971)Google Scholar
  160. 160.
    C. Sturesson, S- Andersson-Engels. A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation. Phys. Med. Biol. 40, 2037–2052 (1995)Google Scholar
  161. 161.
    P.H. Sugarbaker, Management of Peritoneal Surface Malignancy Using Intraperitoneal Chemotherapy and Cytoreductive Surgery. 3rd edn. (The Ludann Company Grand Rapids, Michigan, 1998)Google Scholar
  162. 162.
    G. ter Haar, Therapeutic applications of ultrasound. Prog. Biophys. Mol. Biol. 93, 111–129 (2007)CrossRefGoogle Scholar
  163. 163.
    H.S. Tharp, R.B. Roemer, Optimal power deposition with finite-sized, planar hyperthermia applicator arrays. IEEE Trans. Biomed. Eng. 39, 569–579 (1992)CrossRefGoogle Scholar
  164. 164.
    K. Thorsen, K.G. Ringdal, K. Strand, E. Søreide, J. Hagemo, K. Søreide, Clinical and cellular effects of hypothermia, acidosis and coagulopathy in major injury. Br. J. Surg. 98, 894–907 (2011)CrossRefGoogle Scholar
  165. 165.
    M.J. Tindall, M.A. Peletier, N.M.W. Severens, D.J. Veldman, B.A.J.M. De Mol, Understanding post-operative temperature drop in cardiac surgery: a mathematical model. Math. Med. Biol. 25, 323–335 (2008)zbMATHCrossRefGoogle Scholar
  166. 166.
    R.J. Tschaut, Extracorporeal Circulation in Theory and Practice (Pabst Science Publishers, Lengerich, 1999) [in German]Google Scholar
  167. 167.
    N. Tsuda, K. Kuroda, Y. Suzuki, An inverse method to optimize heating conditions in RF-capacitive hyperthermia. IEEE Trans. Biomed. Eng. 43, 1029–1037 (1996)CrossRefGoogle Scholar
  168. 168.
    S. Tungjitkusolmun, S.T Staelin, D. Haemmerich, J.Z. Tsai, J.G. Webster, F.T. Lee Jr., D.M. Mahvi, V. R. Vorperian, Three-Dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002)Google Scholar
  169. 169.
    R.Turner, M. Streicher, Measuring temperature using MRI: a powerful and versatile technique. MAGMA 25(1), 1–3 (2012)CrossRefGoogle Scholar
  170. 170.
    M. Urano, E. Douple (eds.), Interstitial Hyperthermia: Physics, Biology and Clinical Aspects. Hyperthermia and Oncology, vol. 3 (VSP, Utrecht, 1992)Google Scholar
  171. 171.
    V. Vaicys, A. Eason, J.D. Schieber, E.B. Kulstad, Therapeutic hypothermia induction via an esophageal route: a computer simulation. Am. J. Emerg. Med. 30, 932–935 (2012)CrossRefGoogle Scholar
  172. 172.
    J. Varon, E. Marik, S. Einav, Therapeutic hypothermia: a state-of-the-art emergency medicine perspective. Am. J. Emerg. Med. 30, 800–810 (2012)CrossRefGoogle Scholar
  173. 173.
    B.L. Viglianti, M.W. Dewhirst, J.P. Abraham, J.M. Gorman, E.M. Sparrow, Rationalization of thermal injury quantification methods: application to skin burns. Burns 40, 896–902 (2014)CrossRefGoogle Scholar
  174. 174.
    J.T. Walsh, Basic interactions of light with tissue, in Optical-Thermal Response of Laser Irradiated Tissue, 2nd edn., ed. by A.J. Welch, M.J.C. van Gemert, chap. 1, 13–26 (Springer, Berlin, 2011)Google Scholar
  175. 175.
    S. Weinbaum, L.M. Jiji, A two phase theory for the influence of circulation on the heat transfer in surface tissue, in Advances in Bioengineering, ed. by M.K. Wells (ASME, New York, 1979), pp. 179–182Google Scholar
  176. 176.
    H.L. Weiss. Mechanical damage from cavitation in high intensity focused ultrasound accelerated thrombolysis. UC Berkeley Electronic Theses and Dissertations (2012)Google Scholar
  177. 177.
    A.J. Welch, Laser irradiation of tissues, in Heat Transfer in Medicine and Biology, ed. by A. Shitzer, R.C. Eberhart, chap. 4, vol. 2 (Springer, Berlin, 1985), pp. 135–184Google Scholar
  178. 178.
    A.J. Welch, M.J.C. van Gemert (eds.), Optical-Thermal Response of Laser Irradiated Tissue, 2nd edn. (Springer, Berlin, 2011)Google Scholar
  179. 179.
    A.J. Welch, M.J.C. van Gemert, W.M. Star. Definitions and overview of tissue optics, in Optical-Thermal Response of Laser Irradiated Tissue, 2nd edn., ed. by A.J. Welch, M.J.C. van Gemert, Chap. 3 (Springer, Berlin, 2011), pp. 27–64Google Scholar
  180. 180.
    P.J. Westervelt, Parametric acoustic array. J. Acoust. Soc. Am. 35, 535–537 (1963)CrossRefGoogle Scholar
  181. 181.
    E.H. Wissler, Pennes’ 1948 paper revisited. J. Appl. Physiol. 85, 35–41 (1998)Google Scholar
  182. 182.
    N.T. Wright, On a relationship between the Arrhenius parameters from thermal damage studies. J. Biomech. Eng. 125, 300–304 (2003)CrossRefGoogle Scholar
  183. 183.
    N.T. Wright, Comparison of models of post-hyperthermia cell survival. J. Biomech. Eng. 135, 051001-1-9 (2013)Google Scholar
  184. 184.
    W. Wulff, The energy conservation equation for living tissue. IEEE Trans. Biomed. Eng. BME-21, 494–495 (1974)CrossRefGoogle Scholar
  185. 185.
    P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, P.M. Schlag, Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002)CrossRefGoogle Scholar
  186. 186.
    X. Yang, C.C. Church, A model for the dynamics of gas bubbles in soft tissue. J. Acoust. Soc. Am. 118(6), 35953606 (2005)Google Scholar
  187. 187.
    D. Yang, M.C. Converse, D.M. Mahvi, J.G. Webster, Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans. Biomed. Eng. 54, 1382–1388 (2007)CrossRefGoogle Scholar
  188. 188.
    P.S. Yarmolenko, E.J. Moon, C. Landon, A. Manzoor, D.W. Hochman, B.L. Viglianti, M.W. Dewhirst, Thresholds for thermal damage to normal tissues: an update. Int. J. Hyperth. 27(4), 320–343 (2011)CrossRefGoogle Scholar
  189. 189.
    T.M. Zagar, J.R. Oleson, Z. Vujaskovic, M.W. Dewhirst, O. Crauciunescu, K.L. Blackwell, L.R. Prosnitz, E.L. Jones, Hyperthermia combined with radiation therapy for superficial breast cancer and chest wall recurrence: a review of the randomised data. Int. J. Hyperth. 26(7), 612–617 (2010)CrossRefGoogle Scholar
  190. 190.
    A. Zolfaghari, M. Maerefat, Bioheat transfer, in Developments in Heat Transfer, ed. by M.A. dos Santos Bernardes, chap. 9 (InTech, Rijeka, 2011), ISBN 978-953-307-569-3Google Scholar
  191. 191.
    Y.F. Zhou, High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2(1), 8–27 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonio Fasano
    • 1
  • Adélia Sequeira
    • 2
  1. 1.Fabbrica Italiana Apparecchi Biomedicali (FIAB)Università degli Studi di FirenzeFirenzeItaly
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations