Hemomath pp 205-226 | Cite as

Extracorporeal Blood Oxygenation

  • Antonio Fasano
  • Adélia Sequeira
Part of the MS&A book series (MS&A, volume 18)


Respiration is a complex vital process taking place in the lungs. Deoxygenated blood reaches the right atrium through the venae cavae (superior and inferior), is transferred to the right ventricle through the tricuspid valve, from which it is pumped to the lungs trough the two pairs of pulmonary arteries (left and right). The gas exchange between blood and air occurring in pulmonary alveoli is described in mathematical terms. Besides this aspect, in this chapter we will deal with machines helping or replacing the natural respiratory function with external blood oxygenation. These are the heart-lung machine for cardiopulmonary bypass used in particularly long and complex surgical operations, the extracorporeal membrane oxygenation (ECMO) or the alternative intravenous membrane oxygenator (IMO, or IVOX), and the newly developed machines combining an oxygenator (with the main task of removing CO2) with a hemofilter.


  1. 1.
    L.J. Acierno, The History of Cardiology (Parthenon, New York, 1994)Google Scholar
  2. 2.
    L.J. Acierno. Etienne-Louis Fallot: is it his tetralogy? Clin. Cardiol. 22, 321–322 (1999)CrossRefGoogle Scholar
  3. 3.
    G.S. Adair, The hemoglobin system. VI The oxygen dissociation curve of hemoglobin. J. Biol. Chem. 63, 529–545 (1925)Google Scholar
  4. 4.
    G. Annich, W. Lynch, G. MacLaren, J. Wilson, R. Bartlett, ECMO: Extracorporeal Cardiopulmonary Support in Critical Care (The “Red Book”) 4th edn. (ELSO, Ann Arbor, 2012)Google Scholar
  5. 5.
    A.P. Avolio, Multi-branched model of the human arterial system. Med. Biol. Eng. Comput. 18, 709–718 (1980)CrossRefGoogle Scholar
  6. 6.
    T.G. Baffes, J.L. Fridman, J.P. Bicoff, J.L. Whitehill, Extracorporeal circulation for support of palliative cardiac surgery in infants. Ann. Thorac. Surg. 10(4), 354–363 (1970)CrossRefGoogle Scholar
  7. 7.
    R.H. Bartlett, A.B. Gazzaniga, M.R. Jefferies, R.F. Huxtable, N.J. Haiduc, S.W. Fong, Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. Trans. Am. Soc. Artif. Intern. Organs. 22, 80–93 (1976)Google Scholar
  8. 8.
    J.J. Batzel, M. Bachar, Modeling the cardiovascular-respiratory control system: data, model analysis, and parameter estimation. Acta Biotheor. 58, 369–380 (2010)CrossRefGoogle Scholar
  9. 9.
    R. Bauernschmitt, E. Naujokat, S. Schulz, C.F. Vahl, S. Hagl, R. Lange, Mathematical modelling of extracorporeal circulation: simulation of different perfusion regimens. Perfusion 14, 321–330 (1999)CrossRefGoogle Scholar
  10. 10.
    A. Ben-Tal. Computational models for the study of heart-lung interactions in mammals. Wiley Interdiscip. Rev. Syst. Biol. Med. 4(2), 163–170 (2012)CrossRefGoogle Scholar
  11. 11.
    R.J. Benjamin, B. Dy, J. Perez, A.F. Eder, S.J. Wagner, Bacterial culture of apheresis platelets: a mathematical model of the residual rate of contamination based on unconfirmed positive results. Vox Sang. 106(1), 23–30 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Berezansky, E. Braverman, L. Idels, The Mackey –Glass model of respiratory dynamics: review and new results. Nonlinear Anal. 75, 6034–6052 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    P. Betit, Extracorporeal membrane oxygenation: Quo Vadis? Respir. Care 54(7), 948–957 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Bonnet, X. Wittebole, L.M. Jacquet, P. Hantson, Refractory hypercapnia: a simplified technique for extracorporeal CO2 removal (ECCO2R) in the presence of therapeutic limitations. Acta Anaesth. Belg. 63, 177–180 (2012)Google Scholar
  15. 15.
    C.E. Brown-Séquard. Recherches expérimentales sur les propretés physiologiques et les usages du sang rouge et du sang noir et de leur principaux éléments gazeuse, l’oxygène et l’acide carbonique. J. Physiol. Humaine 1, 729–735 (1858)Google Scholar
  16. 16.
    T.G. Christensen, C. Draeby, Respiration, in Applied Mathematical Models in Human Physiology, ed. by J.T. Ottesen, M.S. Olufsen, J.K. Larsen. SIAM Monographs of Mathematical Modeling and Computation (SIAM, Providence, RI, 2004)Google Scholar
  17. 17.
    L.H. Cohn, Fifty years of open-heart surgery. Circulation 107, 2168–2170 (2003)CrossRefGoogle Scholar
  18. 18.
    F. Corsini, A.G. Cicero, A. Giannuzzi, A. Gaddi. Application of a new processing method to post-LDL-apheresis data. J. Theor. Med. 4(3), 191–196 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    R.M. Curtis, G.J. Trezek, Analysis of heat exchange during cooling and rewarming in cardiopulmonary bypass procedures, in Heat Transfer in Medicine and Biology, ed. by A. Shtizer, R.C. Eberhard, chap. 22 (Plenum, New York, 1985), pp. 261–286Google Scholar
  20. 20.
    A. Doleǎlová. Mathematical model for optimizing ECMO setting in case of respiratory failure. Aalborg University, Biomedical Engineering Student Report (2013)Google Scholar
  21. 21.
    F. de Somer, Y. Van Belleghem, L. Foubert, F. Caes, K. François, F. Dubrulle, G. Van Nooten, Feasibility of a pumpless extracorporeal respiratory assist device. J. Heart Lung Transplant. 18, 1014–1017 (1999)CrossRefGoogle Scholar
  22. 22.
    L. Del Sorbo, L. Pisani, C. Filippini, V. Fanelli, L. Fasano, P. Terragni, A. Dell’Amore, R. Urbino, L. Mascia, A. Evangelista, C. Antro, R. D’Amato, M.J. Sucre, U. Simonetti, P. Persico, S. Nava, V.M. Ranieri, Extracorporeal CO2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit. Care Med. 43(1), 120–127 (2015)CrossRefGoogle Scholar
  23. 23.
    E.A. Fallot. Contribution à l’anatomie pathologique de la maladie bleue (cyanosecardiaque). Marseilles Med. 25, 77–82 (1888)Google Scholar
  24. 24.
    W. Federspiel, T.J. Hewitt, B.G. Hattler, Experimental evaluation of a model for oxygen exchange in a pulsating intravascular artificial lung. Ann. Biomed. Eng. 28, 160–167 (2000)CrossRefGoogle Scholar
  25. 25.
    J.H. Gibbon Jr., Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med. 37, 180–185 (1954)Google Scholar
  26. 26.
    G.P. Gravlee, R.F. Davis, A.H. Stammers, R.M. Ungerleider (eds.), Cardiopulmonary Bypass: Principles and Practice, 3rd edn. (Kluwer, Dordrecht, 2008)Google Scholar
  27. 27.
    J.S. Gray, The multiple factor theory of respiratory regulation. Army Air Force School of Aviation Medicine Proj. Report No. 386 (1, 2, 3) (1945)Google Scholar
  28. 28.
    F.S. Grodins, J.S. Gray, K.R. Schroeder, A.L. Norins, R.W. Jones, Respiratory responses to CO2 inhalation. A theoretical study of a non-linear biological regulator. J. Appl. Physiol. 7, 283–308 (1954)Google Scholar
  29. 29.
    F.S. Grodins, J. Buell, A. Bart, Mathematical analysis and digital simulation of the respiratory control system. J. Appl. Physiol. 22(2), 260–276 (1967)Google Scholar
  30. 30.
    M. Hexamer, J. Werner. A mathematical model for the gas transfer in an oxygenator, Modelling and Control in Biomedical Systems (Elsevier, Melbourne, 2003), pp. 409–414Google Scholar
  31. 31.
    T.J. Hewitt, B.G. Hattler, W. Federspiel, A mathematical model of gas exchange in an intravenous membrane oxygenator. Ann. Biomed. Eng. 26, 166–178 (1998)CrossRefGoogle Scholar
  32. 32.
    J.D. Hill, T.G. O’Brien, I.J. Murray, M.L. Bramson, I.J. Osborn, F. Gerbode, Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N. Engl. J. Med. 286, 629–634 (1972)Google Scholar
  33. 33.
    F. Kappel, Modeling the dynamics of the cardiovascular-respiratory system (CVRS) in humans, a survey. Math. Model. Nat. Phenom. 7, 65–77 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    J. Keener, J. Sneyd, Mathematical Physiology. II, System Physiology. Interdisciplinary Applied Mathematics, 2nd edn., vol. 8/II (Springer, Berlin, 2009)Google Scholar
  35. 35.
    J.L. Le Gallois, Expérience sur le principe de la vie, notamment sur celui des mouvements du cœur, et sur le siège de ce principe: survies du rapport fait a la première classe de l’Institute sur celles relatives aux mouvements du coeur. Paris, d’Hautel (1812)Google Scholar
  36. 36.
    R.-M. Lee, H.-L. Chiu, N.-C. Tsai, Mathematical model of interactive respiration/cardiovascular composite system. International Conference on Trends in Mechanical and Industrial Engineering (ICTMIE’2011) Bangkok, Dec, 135–139 (2011).Google Scholar
  37. 37.
    K. Lehle, A. Philipp, K.A. Hiller, F. Zeman, D. Buchwald, C. Schmid, C. Dornia, D. Lunz, T. Müller, M. Lubnow, Efficiency of gas transfer in venovenous extracorporeal membrane oxygenation: analysis of 317 cases with four different ECMO systems. Intensive Care Med. 40, 1870–1877 (2014)CrossRefGoogle Scholar
  38. 38.
    C.W. Lillehei, A personalized history of extracorporeal circulation. Trans. Am. Soc. Artif. Intern. Organs 28, 5–16 (1982)Google Scholar
  39. 39.
    C.W. Lillehei, Historical development of cardiopulmonary bypass in Minnesota, in Cardiopulmonary Bypass: Principles and Practice, 3rd edn., ed. by Gravlee et al., chap. 1 (Kluwer, Dordrecht, 2008), pp. 3–20Google Scholar
  40. 40.
    C.W. Lillehei, R.A. DeWall, R.C. Read, H.E. Warden, R.L. Varco, Direct vision intracardiac surgery in man using a simple, disposable artificial oxygenator. Dis. Chest 29, 1–8 (1956)CrossRefGoogle Scholar
  41. 41.
    S.J. Lindstrom, V.A. Pellegrino, W.W. Butt, Extracorporeal membrane oxygenation. Med. J. Aust. 191, 178–182 (2009)Google Scholar
  42. 42.
    C. Lorenzo, A. Guido, U. Mauro, A comprehensive simulator of the human respiratory system: validation with experimental and simulated data. Ann. Biomed. Eng. 25, 985–999 (1997)CrossRefGoogle Scholar
  43. 43.
    M. Mackey, L. Glass, Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)CrossRefGoogle Scholar
  44. 44.
    G. Matheis, New technologies for respiratory assist. Perfusion 18, 245–251 (2003)CrossRefGoogle Scholar
  45. 45.
    J. McLeod, Physbe a physiological simulator. Simulation 7(6), 324–329 (1966)Google Scholar
  46. 46.
    A. Mendoza García, B. Baumgartner, U. Schreiber, M. Krane, A. Knoll, R. Bauernschmitt, AutoMedic: fuzzy control development platform for a mobile heart-lung machine, in WC 2009, IFMBE Proceedings, ed. by O. Dössel, T. Becks vol. 25/VII, (2009), pp. 685–688Google Scholar
  47. 47.
    H.T. Milhorn Jr., R. Benton, R. Ross, A.C. Guyton, A mathematical model of the human respiratory control system. Biophys. J. 5, 27–46 (1965)CrossRefGoogle Scholar
  48. 48.
    J.D. Mortensen, J.D. Intravascular oxygenator: a new alternative method for augmenting blood gas transfer in patients with acute respiratory failure. Artif. Organs 16, 75–82 (1992)Google Scholar
  49. 49.
    S.C. Niranjan, J.W. Clark, K.Y. San, J.B. Zwischenberger, A. Bidani, Analysis of factors affecting gas exchange in intravascular blood gas exchanger. J. Appl. Physiol. 77(4), 1716–1730 (1994)Google Scholar
  50. 50.
    A. Oliven, Y. Shechter, Extracorporeal photopheresis: a review. Blood Rev. 15(2), 103–108 (2001)CrossRefGoogle Scholar
  51. 51.
    M. Park, E. Leite Vieira Costa, A.T. Maciel, D.Prudéncio e Silva, N. Friedrich, E. Vasconcelos Santos Barbosa, A.S. Hirota, G. Schettino, L.C. Pontes Azevedo, Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome. PLoS ONE 8(1), e54954 (2013)Google Scholar
  52. 52.
    G.J. Peek, M. Mugford, R. Tiruvoipati, A. Wilson, E. Allen, M.M. Thalanany, C.L. Hibbert, A. Truesdale, F. Clemens, N. Cooper, R.K. Firmin, D. Elbourne, CESAR trial collaboration. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374, 1351–1363 (2009)Google Scholar
  53. 53.
    Z.Y. Peng, J.V. Bishop, X.Y. Wen, M.M. Elder, F. Zhou, A. Chuasuwan, M.J. Carter, J.E. Devlin, A.M. Kaynar, K. Singbartl, F. Pike, R.S. Parker, G. Clermont, W.J. Federspiel, J.A. Kellum, Modulation of chemokine gradients by apheresis redirects leukocyte trafficking to different compartments during sepsis, studies in a rat model. Crit. Care 18, R141 (2014)CrossRefGoogle Scholar
  54. 54.
    R.N. Pittman, Regulation of Tissue Oxygenation (Morgan & Claypool Life Sciences, San Rafael, 2011)Google Scholar
  55. 55.
    A. Qiu, J. Bai, Multiple modeling in the study of interaction of hemodynamics and gas exchange. Comput. Biol. Med. 31, 59–72 (2001)CrossRefGoogle Scholar
  56. 56.
    W.J. Rashkind, W.W. Miller, D. Falcone, R. Toft, Hemodynamic effects of arteriovenous oxygenation with a small-volume artificial extracorporeal lung. J. Pedriatr. 70, 425–429 (1967)CrossRefGoogle Scholar
  57. 57.
    M. Reng, A. Philipp, M. Keiser, M. Pfeifer, S. Gruene, J. Schoelmerich, Pumpless extracorporeal lung assist and adult respiratory distress syndrome. Lancet 356, 219–220 (2000)CrossRefGoogle Scholar
  58. 58.
    F. Sangalli, C. Marzorati, N.K. Rana, History of extracorporeal life support, in ECMO-Extracorporeal Life Support in Adults, ed. by F. Sangalli, N. Patroniti, A. Pesenti, chap. 1 (Springer, Berlin, 2014)Google Scholar
  59. 59.
    F. Sangalli, N. Patroniti, A. Pesenti (eds.), ECMO-Extracorporeal Life Support in Adults (Springer, Berlin, 2014)Google Scholar
  60. 60.
    U. Schreiber, S. Eichhorn, A. Mendoza, B. Baumgartner, R. Bauernschmitt, R. Lange, A. Knoll, M. Krane, A new fuzzy controlled extracorporeal circulation system. First results of an in-vitro investigation. Comput. Cardiol. 36, 497–500 (2009)Google Scholar
  61. 61.
    S. Schulz, R. Bauernschmitt, J. Albers, A. Riesenberg, A. Schwarzhaupt, C.F. Vahl, U. Kiencke, A mathematical high time resolution model of the arterial system under extracorporeal circulation. Biomed. Sci. Instrum. 33, 406–414 (1997)Google Scholar
  62. 62.
    M. Schwarz, C. Heilmann, M.W. Krueger, U. Kiencke. Model based monitoring of hypothermic patients. Metrol. Meas. Syst. 16, 443–455 (2009)Google Scholar
  63. 63.
    D. Sessler, Perioperative heat balance. Anesthesiology 92, 578–596 (2000)CrossRefGoogle Scholar
  64. 64.
    Y. Shi, A.G. Brown, P.V. Lawford, A. Arndt, P. Nuesser, D.R. Hose, Computational modelling and evaluation of cardiovascular response under pulsatile impeller pump support. Interface Focus 1(3), 320–337 (2011)CrossRefGoogle Scholar
  65. 65.
    N.W. Shock, A.B. Hastings, Study of the acid-base balance of the blood: IV. Characterization and interpretation of displacement of the acid-base balance. J. Biol. Chem. 112, 239–262 (1935)Google Scholar
  66. 66.
    D. Sidebotham, A. McGeorge, S. McGuinness, M. Edwards, T. Willcox, J. Beca, Extracorporeal membrane oxygenation for treating severe cardiac and respiratory failure in adults: Part 2-technical considerations. J Cardiothorac. Vasc. Anesth. 24, 164–172 (2010)CrossRefGoogle Scholar
  67. 67.
    D. Sidebotham, S.J. Allen, A. McGeorge, N. Ibbott, T. Willcox, Venovenous extracorporeal membrane oxygenation in adults: practical aspects of circuits, cannulae, and procedures. J. Cardiothorac. Vasc. Anesth. 26(5), 893–909 (2012)CrossRefGoogle Scholar
  68. 68.
    E. Spinelli, R.H. Bartlett. Relationship between hemoglobin concentration and extracorporeal blood flow as determinants of oxygen delivery during venovenous extracorporeal membrane oxygenation: a mathematical model. ASAIO J. 60, 688–693 (2014)CrossRefGoogle Scholar
  69. 69.
    N. Steno, Anatomicus Regij Hafmiensis embryo monstro affinis Parisiis dissectus. Acta Med. Et Philosophia Hafmiensia I, 200–205 (1671)Google Scholar
  70. 70.
    J. Stolwijk, A mathematical model of physiological temperature regulation in man. Nasa Contractor Report cr-1855. Washington, DC, NASA (1971)Google Scholar
  71. 71.
    P.P. Terragni, G. Maiolo, T. Tenaglia, J. Pernechele, V.M. Ranieri. Extracorporeal CO 2 removal and O 2 transfer: a review of the concept, improvements and future development. Trends Anaesthesia Crit. Care 1, 123–127 (2011)CrossRefGoogle Scholar
  72. 72.
    M.J. Tindall, M.A. Peletier, N.M.W. Severens, D.J. Veldman, B.A.J.M. De Mol, Understanding post-operative temperature drop in cardiac surgery: a mathematical model. Math. Med. Biol. 25, 323–335 (2008)CrossRefzbMATHGoogle Scholar
  73. 73.
    M. von Frey, M. Gruber, Untersuchungen uber den Stoffwechsel isolierte Organe. Ein Respiration-Apparat fur isolierte Organe. Virchow’s Arch Physiol 9, 519–532 (1885)Google Scholar
  74. 74.
    L.A. Vricella, V.L. Gott, D.E. Cameron, Milestones in congenital cardiac surgery. MHBD054-CH51[987-1000].qxd, 12:20 Pg. 989 p-mac292 27A:MHBD054: Chapts:CH-51: TechBooks (2006)Google Scholar
  75. 75.
    J.L. Walker, J. Gelfond, L.A. Zarzabal, E. Darling, Calculating mixed venous saturation during Veno-Venous extracorporeal membrane oxygenation. Perfusion 24(5), 333–339 (2009)CrossRefGoogle Scholar
  76. 76.
    M. Walter, S. Weyer, A. Stollenwerk, R. Kopp, J. Arens, S. Leonhardt, A physiological model for extracorporeal oxygenation controller design, Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’10), Buenos Aires, 2010, pp. 434–437Google Scholar
  77. 77.
    J.B. West, Essays on the History of Respiratory Physiology. American Physiological Society (Springer, Berlin, 2015)CrossRefGoogle Scholar
  78. 78.
    W.M. Zapol, M.T. Snider, J.D. Hill, R.J. Fallat, R.H. Bartlett, L.H. Edmunds, A.H. Morris, E.C. Peirce, A.N. Thomas, H.J. Proctor, P.A. Drinker, P. C. Pratt, A. Bagniewski, R.G. Miller Jr., Extracorporeal membrane oxygenation in severe acute respiratory failure: a randomized prospective study. J. Am. Math. Assoc. 242(20), 2193–2196 (1979)CrossRefGoogle Scholar
  79. 79.
    H.G. Zimmer, The heart-lung machine was invented twice - the first time by Max von Frey. Clin. Cardiol. 26, 443–445 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonio Fasano
    • 1
  • Adélia Sequeira
    • 2
  1. 1.Fabbrica Italiana Apparecchi Biomedicali (FIAB)Università degli Studi di FirenzeFirenzeItaly
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations