Hemomath pp 171-203 | Cite as

Extracorporeal Blood Ultrafiltration

  • Antonio Fasano
  • Adélia Sequeira
Part of the MS&A book series (MS&A, volume 18)


In the present chapter and in the one which follows we are going to deal with treatments performed on blood while circulated out of the patient’s body. It is obvious that such procedures invariably require sophisticated techniques, so it is not surprising that mathematics comes into play in a massive way. Having just described the physiology of kidneys it is rather natural to start with hemodialysis, i.e. blood filtration (or more precisely ultrafiltration) which saves the life of people affected by renal dysfunction. We will describe how to model the modern hemofilter, consisting of a bundle of very thin hollow fibers, and how the treatment interacts with the equilibrium of water and other substances in the patient’s organism. Such a device is certainly a prodigious and hardly improvable technological achievement, but comparing it with the natural system we realize how the latter is inimitably efficient.


  1. 1.
    H.E. Abaci, S.A. Altinkaya, Modeling of hemodialysis operation. Ann. Biomed. Eng. 38, 3347–3362 (2010). doi:10.1007/s10439-010-0147-7CrossRefGoogle Scholar
  2. 2.
    J.S. Cameron, A History of the Treatment of Renal Failure by Dialysis (Oxford University Press, Oxford, 2003)Google Scholar
  3. 3.
    B. Canaud, I. Ledebo, History and current status of online hemodiafiltration, in Hemodiafiltration Theory, Technology and Clinical Practice, ed. by M.J. Nubé, M.P.C. Grooteman, P. Blankestijn (Springer, Berlin, 2016)Google Scholar
  4. 4.
    R. Cherniha, J. Waniewski, New mathematical model for fluid-glucose-albumin transport in peritoneal dialysis. arXiv:1110.1283v1 [math.AP] (2011)Google Scholar
  5. 5.
    L. Colì, M. Ursino, V. Dalmastri, F. Volpe, G. La Manna, G. Avanzolini, S. Stefoni, V. Bonomini, A simple mathematical model applied to selection of the sodium profile during profiled haemodialysis. Nephrol. Dial. Transplant. 13, 404–416 (1998)CrossRefGoogle Scholar
  6. 6.
    S. Eloot, D. DeWachter, I. Van Trich, P. Verdonck, Computational flow in hollow - fiber dialyzers. Artif. Organs 26, 590–599 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Farina, A. Fasano, G. Guarnieri. A Mathematical model for the evolution of solute concentrations in a hemodialysis filter. Int. J. Biomath. (to appear)Google Scholar
  8. 8.
    G.B. Fiore, C. Ronco, Mathematical model to characterize internal friction, in Cardiovascular Disorders in Hemodialysis. Contributions to Nephrology, ed. by C. Ronco A. Brendolan, N.W. Levin, vol.149 (Karger, Basel, 2005), pp. 27–34Google Scholar
  9. 9.
    M. Galach, A. Weryński, Mathematical modeling of renal replacement theories. Biocyb. Biomed. Eng. 24, 3–18 (2004)Google Scholar
  10. 10.
    L.W. Henderson, A. Besarab, A. Michaels, L.W. Bluemle Jr., Blood purification by ultrafiltration and fluid replacement (diafiltration). Hemodial. Int. 8(1), 10–18 (2004)CrossRefGoogle Scholar
  11. 11.
    W.L. Henrich, W.M. Bennet (eds.), Dialysis as Treatment of End-Stage Renal Disease, ed. by R.W. Schrier, Sect. 1, chaps. 1–7, vol. 5 Online Edition (2011)Google Scholar
  12. 12.
    A. Hirano, K.-I. Yamamoto, M. Matsuda, T. Ogawa, T. Yakushiji, T. Miyasaka, K. Sakai, Evaluation of dialyzer jacket structure and hollow-fiber dialysis membranes to achieve high dialysis performance. Ther. Apher. Dial. 15(1), 66–74 (2010)CrossRefGoogle Scholar
  13. 13.
    T.S. Ing, M.A. Rahman, C.M. Kjellstrand (eds.), Dialysis: History, Development and Promise (World Scientific, Singapore, 2012)Google Scholar
  14. 14.
    J.Q. Jaeger, R.L. Mehta, Assessment of dry weight in hemodialysis: an overview. J. Am. Soc. Nephrol. 20, 392–403 (1999)Google Scholar
  15. 15.
    W. Jäger, A. Mikelic. Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Media 78, 489–508 (2009)CrossRefMathSciNetGoogle Scholar
  16. 16.
    O. Kedem, A. Katchalsky, Thermodynamics analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246 (1958)CrossRefGoogle Scholar
  17. 17.
    F. Kiil, Development of parallel-flow artificial kidney. Acta Chir. Scand. 253(Suppl), 142–150 (1960)Google Scholar
  18. 18.
    J.C. Kim, J.H. Kim, H.-C. Kim, E. Kang, K.G. Kim, H.C. Kim, B.G. Min, C. Ronco, Effect of fiber structure on dialysate flow profile and hollow-fiber hemodialyzer reliability: CT perfusion study. Int. J. Artif. Organs 31, 944–950 (2008)Google Scholar
  19. 19.
    J.C. Kim, J.H. Kim, H.-C. Kim, K.G. Kim, J.C. Lee, E. Kang, H.C. Kim, B. G. Min, C. Ronco. Three-dimensional dialysate flow analysis in a hollow-fiber dialyzer by perfusion computed tomography. Int. J. Artif. Organs 31, 553–560 (2008)Google Scholar
  20. 20.
    J.C. Kim, D. Cruz, F. Garzotto, M. Kaushik, C. Teixeria, M. Baldwin, I. Baldwin, F. Nalesso, J.H. Kim, E. Kang, H.C. Kim, C. Ronco, Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal, Computational modeling. Blood Purif. 35, 106–111 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Kramer, W. Wigger, J. Rieger, D. Matthaei, F. Scheler, Arteriovenous haemofiltration: a new and simple method for treatment of over-hydrated patients resistant to diuretics. Klin. Wochenschr. 55, 1121–1122 (1977)CrossRefGoogle Scholar
  22. 22.
    E.M. Landis, J.R. Pappenheimer, Exchange of substances through the capillary walls, in Handbook of Physiology. Circulation, ed. by W.F. Hamilton (American Physiological Society, Washington, DC, 1963)Google Scholar
  23. 23.
    E.N. Lightfoot, Transport Phenomena and Living Systems (Wiley, New York, 1974)Google Scholar
  24. 24.
    K.M. Lim, E.B. Shim, Research Computational assessment of the effects of a pulsatile pump on toxin removal in blood purification. BioMed. Eng. OnLine 9, 1–16 (2010)CrossRefGoogle Scholar
  25. 25.
    M.R. Malinow, W. Korzon, An experimental method for obtaining an ultrafiltrate of the blood. J. Lab. Clin. Med. 32, 461–471 (1947)Google Scholar
  26. 26.
    G. Metry, R. Adhikarla, D. Schneditz, C. Ronco, N.W. Levin, Effect of changes in the intravascular volume during hemodialysis on blood viscoelasticity. Indian J. Nephrol. 21(2), 95–100 (2011)CrossRefGoogle Scholar
  27. 27.
    S.C. Niranjan, J.W. Clark, K.Y. San, J.B. Zwischenberger, A. Bidani, Analysis of factors affecting gas exchange in intravascular blood gas exchanger. J. Appl. Physiol. 77(4), 1716–1730 (1994)Google Scholar
  28. 28.
    T.L. Pallone, J. Petersen, A mathematical model of continuous arteriovenous hemofiltration predicts performances. ASAIO Trans. 33, 304–308 (1987)Google Scholar
  29. 29.
    B. Palmer, Dilayzate composition in hemodialysis and peritoneal dialysis, in Principles and Practice of Dialysis, 4th edn., Chap. 3, ed. by W.L. Heinrich (Kluwer, 2009), pp. 25–41Google Scholar
  30. 30.
    S.J. Peitzman, Dropsy, Dialysis, Transplant: A Short History of Failing Kidneys (John Hopkin’s University Press, Baltimore, 2007)Google Scholar
  31. 31.
    C. Poh, P. Hardy, Z. Liao, Z. Huang, W.R. Clark, D. Gao, Effect of spacer yarns on the dialysate flow distribution of hemodialyzers: a magnetic resonance imaging study. ASAIO J. 49, 440–448 (2003)Google Scholar
  32. 32.
    E.A. Quellhorst, Ultrafiltration/Hemofiltration practice, in Replacement of Renal Function by Dialysis, 4th edn., ed. by C. Jacobs (Kluwer, Dordrecht, 1996), pp. 380–389CrossRefGoogle Scholar
  33. 33.
    B. Rippe, R.T. Krediet, Peritoneal physiology - transport of solutes, in The Textbook of Peritoneal Dialysis, ed. by R. Gokal, K.D. Nolph (Kluwer, Dordrecht, 1994), pp.169–113Google Scholar
  34. 34.
    C. Ronco, A. Brendolan, M. Feriani, M. Milan, P. Conz, A. Lupi, P. Berto, M. Bettini, G. La Greca, A new scintigraphic method to characterize ultrafiltration in hollow fiber dialyzers. Kidney Int. 41, 1383–1393 (1992)CrossRefGoogle Scholar
  35. 35.
    C. Ronco, A. Brendolan, C. Crepaldi, M. Rodighiero, M. Scabardi, Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique, J. Am. Soc. Nephrol. 13, 53–61 (2002)Google Scholar
  36. 36.
    C. Ronco, A. Brendolan, N.W. Levin, Cardiovascular Disorders in Hemodialysis. Contributions to Nephrology, vol. 149 (Karger, Basel, 2005)Google Scholar
  37. 37.
    C. Ronco, N. Levin, A. Brendolan, F. Nalesso, D. Cruz, C. Ocampo, D. Kuang, M. Bonello, M. De Cal, V. Corradi, Z. Ricci, Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances. Hemodial. Int. 10, 380–388 (2006)CrossRefGoogle Scholar
  38. 38.
    C. Ronco. S. Samoni, S. De Rosa, Dialyzers for hemodiafiltraion, in Hemodiafiltration Theory, Technology and Clinical Practice, ed. by M.J. Nubé, M.P.C. Grooteman, P. Blankestijn (Springer, Berlin, 2016), pp. 57–68Google Scholar
  39. 39.
    C. Ronco, F. Garzotto, J.C. Kim, A. Fasano, A. Farina, I. Borsi, Modeling blood filtration in hollow fibers dialyzers coupled with patient’s body dynamics. Rend. Lincei Mat. Appl. 27, 369–412 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    B.D. Rose, Clinical Physiology of Acid - Base and Electrolyte Disorders (McGraw Hill, New York, 1989)Google Scholar
  41. 41.
    Y. Sano, A. Nakayama. A porous media approach for analyzing a countercurrent dialyzer system. J. Heat Transf. 134, 072602–1/11 (2012)CrossRefGoogle Scholar
  42. 42.
    R.W. Schrier (ed.), Atlas of Diseases of the Kidney. Online Edition (ISN Informatics Commission and NKF cyberNephrology), vol. 1–5 (2011)Google Scholar
  43. 43.
    S. Shaldon, Development of hemodialysis, from access to machine, in Proceedings of “Excellence in Dialysis: Update in Nephrology”, Karachi, 2002Google Scholar
  44. 44.
    E.M. Starling, On the absorption of fluids from the convective tissue spaces. J. Physiol. 19, 312–319 (1896)CrossRefGoogle Scholar
  45. 45.
    N. Thomas, The history of dialysis and transplantation, Chap. 1 in Renal Nursing, 4th edn., ed. by N.Thomas (Wiley Blackwell, Chichester, 2013)Google Scholar
  46. 46.
    N. Tomisawa, A.C. Yamashita, Amount of adsorbed albumin loss by dialysis membranes with protein adsorption. J. Artif. Organs 12, 194–199 (2009)CrossRefGoogle Scholar
  47. 47.
    J. Waniewski, Mathematical modeling of fluid and solute transport in hemodialysis and peritoneal dialysis. J. Membr. Sci. 274, 24–37 (2006)CrossRefGoogle Scholar
  48. 48.
    C. Warrick, An improvement in the practice of tapping, whereby that operation instead of the relief of symptoms, became an absolute cure for ascites, exemplified in the case of Jane Roman. Philos. Trans. R. Soc. 43, 12–19 (1744)CrossRefGoogle Scholar
  49. 49.
    M. Ziólko, J.A. Piertzyk, J. Grabska-Chrzastowska, Accuracy of hemodialysis modeling. Kidney Int. 57, 1152–1163 (2000)CrossRefGoogle Scholar
  50. 50.
    A.C. Guyton, J.E. Hall, A Textbook of Medical Physiology, 10th edn. (W.B.Saunders, Philadelphia, 2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonio Fasano
    • 1
  • Adélia Sequeira
    • 2
  1. 1.Fabbrica Italiana Apparecchi Biomedicali (FIAB)Università degli Studi di FirenzeFirenzeItaly
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations