Hemomath pp 79-158 | Cite as

Blood Coagulation

  • Antonio Fasano
  • Adélia Sequeira
Part of the MS&A book series (MS&A, volume 18)


This chapter is devoted to the description and modeling of the process of blood coagulation which is crucial for life and is the result of an intricate sequence of chemical reactions, involving an active role of platelets and of a surprisingly large number of blood born massive molecules performing a sequence of operations aimed at the formation of the clot and at its subsequent dissolution. Due to such a complexity there is an enormous variety of conditions leading to insufficient or excessive coagulation. We will discuss also the biological and mathematical aspects regarding these pathologies.


  1. 1.
    J.E. Abelous, E. Bardier, Les substances hypotensives de l’urine humaine normale. C. R. Soc. Biol. 66, 51120 (1909)Google Scholar
  2. 2.
    K. Affeld, A.J. Reininger, J. Gadischke, K. Grunert, S. Schmidt, F. Thiele, Fluid mechanics of the stagnation point flow chamber and its platelet deposition. Artif. Org. 19, 597–602 (1995)CrossRefGoogle Scholar
  3. 3.
    W. Ageno, A.C. Spyropoulos, A.G.G. Turpie, Role of new anticoagulants for the prevention of venous thromboembolism after major orthopaedic surgery and in hospitalized acutely ill medical patients. Thromb. Haemost. 107, 1027–1034 (2012)CrossRefGoogle Scholar
  4. 4.
    W.C. Aird, Vascular bed-specific thrombosis. J. Thromb. Haemost. 5(Suppl. 1), 283–291 (2007)CrossRefGoogle Scholar
  5. 5.
    D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5(1), 3–48 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    R.A. Aldrich, A.G. Steinberg, D.C. Campbell, Pedigree demonstrating a sex-linked recessive condition characterised by draining ears, eczematoid dermatitis and bloody diarrhoea. Pediatrics 13, 133–139 (1954)Google Scholar
  7. 7.
    B. Alexander, A. De Vries, R. Goldstein, A factor in serum which accelerates the conversion of prothrombin to thrombin; its evolution with special reference to the influence of conditions which affect blood coagulation. Blood 4, 739–46 (1949)Google Scholar
  8. 8.
    M. Anand, K.R. Rajagopal, A mathematical model to describe the change in the constitutive character of blood due to platelet activation. C. R. Méc. 330(8), 557–562 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    M. Anand, K. Rajagopal, K.R. Rajagopal, A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5(3–4), 183–218 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Anand, K. Rajagopal, K.R. Rajagopal, A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb. 34, 109–120 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Anand, K. Rajagopal, K.R. Rajagopal, A viscoelastic fluid model for describing the mechanics of a coarse ligated plasma clot. Theor. Comput. Fluid. Dyn. 20, 239–250 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    M. Anand, K. Rajagopal, K.R. Rajagopal, A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. Theor. Biol. 253, 725–738 (2008)Google Scholar
  13. 13.
    S.T. Anning, The historic aspects of venous thrombosis. Med. Hist. 1, 28–37 (1957)CrossRefGoogle Scholar
  14. 14.
    F.I. Ataullakhanov, D.A. Molchanova, A.V. Pokhilko, Mathematical model of the blood coagulation system: intrinsic pathway. Biofizika 40(2), 434–442 (1995)Google Scholar
  15. 15.
    F.I. Ataullakhanov, G.T. Guna, V.I. Sarbash, R.I. Volkova, Spatio-temporal dynamics of clotting and pattern formation in human blood. Biochim. Biophys. Acta Gen. Subjects 1425(3), 453–468 (1998)CrossRefGoogle Scholar
  16. 16.
    F.I. Ataullakhanov, Y.V. Krasotkina, V.I. Sarbash, R.I. Volkova, E.I. Sinauridse, A.Y. Kondratov, Spatio-temporal dynamics of blood coagulation and pattern formation. An experimental study. Int. J. Bifurcation Chaos 12(9), 1969–1983 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    F.I. Ataullakhanov, V.I. Zarnitsina, A.V. Pokhilko, A.I. Lobanov, O.L. Morozova, Spatio-temporal dynamics of blood coagulation and pattern formation. A theoretical approach. Int. J. Bifurcation Chaos 12(9), 1985 (2002)Google Scholar
  18. 18.
    E. Bächli, History of tissue factor. Br. J. Hematol. 110, 248–255 (2000)CrossRefGoogle Scholar
  19. 19.
    F. Bachmann, The discovery of factor X: a personal reminiscence. Thromb. Haemost. 98, 16–19 (2007)Google Scholar
  20. 20.
    J. Bäck, J. Sanchez, G. Elgue, K.N. Ekdahl, B. Nilsson, Activated human platelets induce factor XIIa-mediated contact activation. Biochem. Biophys. Res. Commun. 39(1), 11–17 (2010)CrossRefGoogle Scholar
  21. 21.
    P. Bagchi, Mesoscale simulation of blood flow in small vessels. Biophys. J. 92, 1858–1877 (2007)CrossRefGoogle Scholar
  22. 22.
    C.N. Bagot, R. Arya, Virchow and his triad: a question of attribution. Br. J. Haematol. 143, 180–190 (2008)CrossRefGoogle Scholar
  23. 23.
    H.A. Barnes, The yield stress - a review or “πανταρες” - everything flows? J. Non-Newtonian Fluid Mech. 81, 133–178 (1999)Google Scholar
  24. 24.
    L. Baronciani, P.M. Manucci, The molecular basis of disease, in Molecular Hematology, 3rd edn., ed. by D. Provan, J.G. Gribben, chap. 19 (Wiley-Blackwell, Hoboken, 2010), pp. 233–245Google Scholar
  25. 25.
    C. Basciano, C. Kleinstreuer, S. Hyun, E.A. Finol, A relation between near-wall particle-hemodynamics and onset of thrombus formation in abdominal aortic aneurysms. Ann. Biomed. Eng. 39(7), 2010–2026 (2011)CrossRefGoogle Scholar
  26. 26.
    R.C. Becker, Cell-based models of coagulation: a paradigm in evolution. J. Thromb. Thrombolysis 20(1), 65–68 (2005)CrossRefGoogle Scholar
  27. 27.
    E. Beltrami, J. Jesty, Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: application to the feedbacks of blood coagulation. Proc. Natl. Acad. Sci. USA 92, 8744–8748 (1995)zbMATHCrossRefGoogle Scholar
  28. 28.
    T.K. Belval, J.D. Hellums, Analysis of shear-induced platelet aggregation with population balance mathematics. Biophys. J. 50(3), 479–487 (1986)CrossRefGoogle Scholar
  29. 29.
    J. Bernard, J.P. Soulier, Sur une nouvelle varit de dystrophie thrombocytaire hemorragipare congnitale. Semaine des Hpitaux de Paris 24, 3217–3223 (1948)Google Scholar
  30. 30.
    J. Bernsdorf, S.E. Harrison, S.M. Smith, P.V. Lawford, D.R. Hose, Applying the lattice Boltzmann technique to biofluids: a novel approach to simulate blood coagulation. Comput. Math. Appl. 55(7), 1408–1414 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    R.M. Bertina, B.P. Koeleman, T. Koster et al., Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369, 6467 (1994)CrossRefGoogle Scholar
  32. 32.
    R. Biggs, A.S. Douglas, R.G. Macfarlane, J.V. Dacie, W.R. Pitney, C. Merskey, J.R. OBrien, Christmas disease: a condition previously mistaken for haemophilia. Br. Med. J. 2, 113–129 (1952)CrossRefGoogle Scholar
  33. 33.
    T. Bodnár, A. Sequeira, Numerical simulation of the coagulation dynamics of blood. Comp. Math. Methods Med. 9(2), 83–104 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    T. Bodnár, K.R. Rajagopal, A. Sequeira, Simulation of the three-dimensional flow of blood using a shear-thinning viscoelastic fluid model. Math. Model. Nat. Phenom. 6, 1–24 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    T. Bodnár, A. Fasano, A. Sequeira, Mathematical models for blood coagulation, in FluidStructure Interaction and Biomedical Applications, ed. by T. Bodnár, G.P. Galdi, S. Nečasová. Advances in Mathematical Fluid Mechanics, chap. 7 (Birkhäuser, Basel, 2014), pp. 483–569Google Scholar
  36. 36.
    P.H. Bolton-Maggs, E.A. Chalmers, P.W. Collins, P. Harrison, S. Kitchen, R.J. Liesner, A. Minford, A.D. Mumford, L.A. Parapia, D.J. Perry, S.P. Watson, J.T. Wilde, M.D. Williams, A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br. J. Haematol. 135(5), 603–33 (2006)CrossRefGoogle Scholar
  37. 37.
    I. Borsi, A. Farina, A. Fasano, K.R. Rajagopal, Modelling the combined chemical and mechanical action for blood clotting. Math. Sci. Appl. 9(2), 83–104 (2008)zbMATHGoogle Scholar
  38. 38.
    K. Boryczko, W. Dzwinela, D.A. Yuen, Modeling fibrin aggregation in blood flow with discrete-particles. Comput. Methods Prog. Biomed. 75, 181–194 (2004)CrossRefGoogle Scholar
  39. 39.
    D.B. Brewer, Max Shultze (1865), G. Bizzozero (1882) and the discovery of the platelet. Br. J. Haematol. 133, 251–258 (2006)Google Scholar
  40. 40.
    L. Brugnano, F. Di Patti, G. Longo, An incremental mathematical model for Immune Thrombocytopenic Purpura (ITP). Math. Comput. Modell. 42(1112), 1299–1314 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    K. Brummel-Ziedins, Models for thrombin generation and risk of disease. J. Thromb. Haemost. 11(Suppl.1), 212–223 (2013)CrossRefGoogle Scholar
  42. 42.
    K.E. Brummel-Ziedins, T. Orfeo, M. Gissel, K.G. Mann, F.R. Rosendaal, Factor Xa generation by computational modeling: an additional discriminator to thrombin generation evaluation. PLoS ONE 7(1), e29178 (2012)Google Scholar
  43. 43.
    D. Brune, S. Kim, Predicting protein diffusion coefficients. Proc. Natl. Acad. Sci. USA 90(9), 3835–3839 (1993)CrossRefGoogle Scholar
  44. 44.
    S. Butenas, K.E. Brummel, R.F. Branda, S.G. Paradis, K.G. Mann, Mechanism of factor VIIa-dependent coagulation in hemophilia blood. Blood 99, 923–930 (2002)CrossRefGoogle Scholar
  45. 45.
    S. Butenas, K.E. Brummel, B.A. Bouchard, K.G. Mann, How factor VIIa works in hemophilia. J. Thromb. Haemost. 1, 1158–1160 (2003)CrossRefGoogle Scholar
  46. 46.
    S. Butenas, T. Orfeo, M.T. Gissel, K.E. Brummel, K.G. Mann, The significance of circulating factor IXa in blood. J. Biol. Chem. 279(22), 22875–22882 (2004)CrossRefGoogle Scholar
  47. 47.
    S. Butenas, T. Orfeo, K.G. Mann, Tissue factor in coagulation: Which? Where? When? Arterioscler. Thromb. Vasc. Biol. 29, 1989–1996 (2009)CrossRefGoogle Scholar
  48. 48.
    J. Caen, Q. Wu, Hageman factor, platelets and polyphosphates: early history and recent connection. J. Thromb. Haemost. 8(8), 1670–1674 (2010)CrossRefGoogle Scholar
  49. 49.
    S.L. Carpenter, P. Mathew, α2-antiplasmin and its deficiency: fibrinolysis out of balance. Haemophilia 14, 1250–1254 (2008)Google Scholar
  50. 50.
    M.S. Chatterjee, W.S. Denney, H. Jing, S.L. Diamond, System biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Comp. Biol. 6(9), 1–23 (2010)CrossRefGoogle Scholar
  51. 51.
    S. Cito, M.D. Mazzeo, L. Badimon, A review of macroscopic thrombus modeling methods. Thromb. Res. 131, 116–124 (2013)CrossRefGoogle Scholar
  52. 52.
    K.J. Clementson, Platelets disorders, in Molecular Hematology, 3rd edn., ed. by D. Provan, J.G. Gribben, chap. 20 (Wiley-Blackwell, Hoboken, 2010), pp. 246–258Google Scholar
  53. 53.
    B.S. Coller, A brief history of ideas about platelets in health and disease. Foreword to [175], pp. xxiii–xl (2007)Google Scholar
  54. 54.
    M.E. Combariza, X. Yu, W.S. Nesbitt, A. Mitchell, F.J. Tovar-Lopez, Nonlinear dynamic modelling of platelet aggregation via microfluidic devices. IEEE Trans. Biomed. Eng. 62, 1718–1727 (2015)CrossRefGoogle Scholar
  55. 55.
    B. Cooper, Oslers role in defining the third corpuscle, or blood plates. Proceedings (Baylor University, Medical Center) 18(4), 376–378 (2005)Google Scholar
  56. 56.
    J.M. Coutinho, J.M. Ferro, P. Canhão, F. Barinagarrementeria, C. Cantù M.G. Bousser, J. Stam, Cerebral venous and sinus thrombosis in women. Stroke 40, 2356–2361 (2009)CrossRefGoogle Scholar
  57. 57.
    K.J. Croce, M. Sakuma, D.I. Simon, Platelet-leukocyte-endothelium cross talk. Chapter 7 of [96] (2008)Google Scholar
  58. 58.
    L.M. Crowl, A.L. Fogelson, Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int. J. Numer. Method Biomed. Eng. 26, 471–487 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    B. Dahlbäck, Blood coagulation and its regulation by anticoagulant pathways: genetic pathogenesis of bleeding and thrombotic diseases. J. Intern. Med. 257(3), 209–223 (2005)CrossRefGoogle Scholar
  60. 60.
    B. Dählbeck, A. Hillarp, Molecular coagulation and thrombophilia, in Molecular Hematology, 3rd edn., ed. by D. Provan, J.G. Gribben, chap. 17 (Wiley-Blackwell, Hoboken, 2010), pp. 208–218Google Scholar
  61. 61.
    G. Davì, C. Patrono, Platelets activation and atherothrombosis. N. Engl. J. Med. 367, 2482–2494 (2007)CrossRefGoogle Scholar
  62. 62.
    T. David, S. Thomas, P.G. Walker, Platelet deposition in stagnations point flow: an analytical and computational simulation. Med. Eng. Phys. 23, 299–132 (2001)CrossRefGoogle Scholar
  63. 63.
    E.W. Davie, A brief historical review of the Waterfall/Cascade of blood coagulation. J. Biol. Chem. 278, 50819–50832 (2003)CrossRefGoogle Scholar
  64. 64.
    E.W. Davie, O.D. Ratnoff, Waterfall sequence for intrinsic blood clotting. Science 145(3638), 1310–1312 (1964)CrossRefGoogle Scholar
  65. 65.
    S.M. Dopheide, M.J. Maxwell, S.P. Jackson, Shear-dependent tether formation during platelet translocation on von Willebrand factor. Blood 99, 159–167 (2002)CrossRefGoogle Scholar
  66. 66.
    R.L. Drake, A general mathematical survey of the coagulation equation, in Topics in Current Aerosol Research (Part 2), ed. by G.M. Hidy, J.R. Brock. International Reviews in Aerosol Physics and Chemistry, vol. 3 (Pergamon Press, Oxford, 1972), pp. 201–376Google Scholar
  67. 67.
    W. Dzwinel, K. Boryczko, D.A. Yuen, A discrete-particle model of blood dynamics in capillary vessels. J. Colloid Interface Sci. 258, 163–173 (2003)zbMATHCrossRefGoogle Scholar
  68. 68.
    K.E. Eilertsen, B. Østerud, The role of blood cells and their microparticles in blood coagulation. Biochem. Soc. Trans. 33(2), 418–422 (2005)CrossRefGoogle Scholar
  69. 69.
    S.G. Farmer (ed.), The Kinin System (Academic, London, 1997)Google Scholar
  70. 70.
    A. Fasano, The dynamics of two-phase liquid dispersions: necessity of a new approach. Milan J. Math. 70, 245–264 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    A. Fasano, R. Santos, A. Sequeira, Blood coagulation: a puzzle for biologists, a maze for mathematicians, in Modelling Physiological Flows, ed. by D. Ambrosi, A. Quarteroni, G. Rozza, chap. 3 (Springer Italia, Milano, 2011), pp. 44–77. doi:10.1007/978-88-470-1935-53Google Scholar
  72. 72.
    A. Fasano, J. Pavlova, A. Sequeira, A synthetic model for blood coagulation including blood slip at the vessel wall. Clin. Hemorheol. Microcirc. 54, 1–14 (2013)Google Scholar
  73. 73.
    P-J. Fay, P.J. Haidaris, T.M. Smudzin, Human factor VIIIa subunit structure. J. Biol. Chem. 14, 8957–8962 (1991)Google Scholar
  74. 74.
    D.A. Fedosov, G.E. Karniadakis, Triple-decker: interfacing atomistic - mesoscopic - continuum flow regimes. J. Comput. Phys. 228(4), 1157–1171 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    B.G. Firkin, The Platelets and its Disorders (MTP Press, Washington, 1984)CrossRefGoogle Scholar
  76. 76.
    A.L. Fogelson, A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J. Comput. Phys. 56, 111–134 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  77. 77.
    A.L. Fogelson, Continuum models of platelet aggregation: formulation and mechanical properties. SIAM J. Appl. Math. 52(4), 1089–1110 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  78. 78.
    A.L. Fogelson, R.D. Guy, Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol. 21(4), 293–334 (2004)zbMATHCrossRefGoogle Scholar
  79. 79.
    A.L. Fogelson, R.D. Guy, Immersed-boundary-type models of intravascular platelet aggregation. Comput. Methods Appl. Mech. Eng. 197, 2087–2104 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    A.L. Fogelson, J.P. Keener, Toward an understanding of fibrin branching structure. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 1–24 (2010)MathSciNetCrossRefGoogle Scholar
  81. 81.
    A.L. Fogelson, N. Tania, Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. Pathophysiol. Haemost. Thromb. 34, 91–108 (2005)CrossRefGoogle Scholar
  82. 82.
    W.B. Foster, M.E. Nesheim, K.G. Mann, The factor Xa-catalyzed activation of factor V. J. Biol. Chem. 258, 13970–13977 (1983)Google Scholar
  83. 83.
    D. Gailani, A. Zivelin, D. Sinha, P.N. Walsh, Do platelets synthesize factor XI? J. Thromb. Haemost. 2(10), 1709–1712 (2004)CrossRefGoogle Scholar
  84. 84.
    H. Galina, J.B. Lechowicz, Mean-field kinetic modeling of polymerization: the Smoluchowski coagulation equation. Adv. Polym. Sci. 137, 135–172 (1998)CrossRefGoogle Scholar
  85. 85.
    R.B. Gayle III, Ch.R. Maliszewski, S.D. Gimpel, M.A. Schoenborn, R. Guy Caspary, C. Richards, K. Brasel, V. Price, J.H.F. Drosopoulos, N. Islam, T.N. Alyonycheva, M.J. Broekman, A.J. Marcus, Inhibition of platelet function by recombinant soluble Ecto-ADPase/CD39. J. Clin. Invest. 101, 1851–1859 (1998)CrossRefGoogle Scholar
  86. 86.
    V. Gazzaniga, L. Ottini, The discovery of platelets and their function. Vesalius 17, 22–26 (2001)Google Scholar
  87. 87.
    J.N. George, Thrombotic thrombocytopenic purpura. New Engl. J. Med. 354, 1927–1935 (2006)CrossRefGoogle Scholar
  88. 88.
    P. Giangrande, Six characters in search of an author: the history of the nomenclature of coagulation factors. Br. J. Haematol. 121, 703–712 (2003)CrossRefGoogle Scholar
  89. 89.
    P. Giangrande, Acquired hemophilia (revised ed.), in Treatment of Hemophilia, vol. 38 (World Federation of Hemophilia, 2012), pp. 1–7Google Scholar
  90. 90.
    L. Gilchrist, A female case of haemophilia. Proc. R. Soc. Med. 54(9), 813814 (1961)Google Scholar
  91. 91.
    W.E. Glanzmann, Hereditäre hämorrhägische Thrombasthenie. Ein Beitrag zur Pathologie der Blutplättchen. Jahrbuch für Kinderheilkunde 88, 1–42, 113–141 (1918)Google Scholar
  92. 92.
    S.Z. Goldhaber, A. Leizorovicz, A.K. Kakkar et al., Apixaban versus enoxaparin for thrombophylaxix in medically ill patients. N. Engl. J. Med. 365, 2167–2177 (2011)CrossRefGoogle Scholar
  93. 93.
    H.L. Goldsmith, V.T. Turitto, Rheological aspects of thrombosis and haemostasis: basic principles and applications. Thromb. Heamost. 55(3), 100–105 (1986)Google Scholar
  94. 94.
    G.H. Goldsmith Jr., H. Saito, O.D. Ratnoff, The activation of Plasminogen by Hageman Factor (Factor XII) and Hageman Factor fragments. J. Clin. Invest. 62, 54–60 (1978)CrossRefGoogle Scholar
  95. 95.
    A. Gómez-Outes, A. Terleira-Fernández, G. Calvo-Rojas, M.L. Suárez-Gea, E. Vargas-Castrillón, Dabigatran, rivaroxaban, or apixaban versus warfarin in patients with nonvalvular atrial fibrillation: a systematic review and meta – analysis of subgroups. Thrombosis (2013). doi:10.1155/2013/640723Google Scholar
  96. 96.
    P. Gresele, V. Fuster, J.A. Lopez, C.P. Page, J. Vermylen (eds.), Platelets in Hematologic and Cardiovascular Disorders: A Clinical Handbook (Cambridge University Press, Cambridge, 2008)Google Scholar
  97. 97.
    L. Grinberg, D.A. Fedosov, G.E. Karniadakis, Parallel multiscale simulations of a brain aneurysm. J. Comput. Phys. 244, 131–147 (2013)MathSciNetCrossRefGoogle Scholar
  98. 98.
    R.I. Handin, Inherited platelets disorders. Hematology 2005, 396–402 (2005)CrossRefGoogle Scholar
  99. 99.
    C.M. Hanley, P.R. Kowey, Are the novel anticoagulants better than warfarin for patients with atrial fibrillation? J. Thorac. Dis. 7(2), 165–171 (2015)Google Scholar
  100. 100.
    S.E. Harrison, S.M. Smith, J. Bernsdorf, D.R. Hose, P.V. Lawford, Application and validation of the lattice Boltzmann method for modelling flow-related clotting. J.Biomech. 3023–3028 (2007)Google Scholar
  101. 101.
    W.E. Hathaway, L.P. Belhasen, H.S. Hathaway, Evidence for a new plasma thromboplastin factor. I. Case report, coagulation studies and physico-chemical properties. Blood 26, 521 (1965)Google Scholar
  102. 102.
    C.R.M. Hay, Thrombosis and recombinant factor VIIa. J. Thromb. Haemost. 2, 1698–1699 (2004)CrossRefGoogle Scholar
  103. 103.
    U. Hedner, M. Ezban, Tissue Factor and Factor VIIa as therapeutic targets in disorders of hemostasis. Annu. Rev. Med. 59, 29–41 (2008)CrossRefGoogle Scholar
  104. 104.
    H.C. Hemker, S. Kerdelo, R.M. Kremers, Is there value in kinetic modeling of thrombin generation? No (unless). J. Thromb. Haemost. 10, 1470–1477 (2002)CrossRefGoogle Scholar
  105. 105.
    D. Hershey, S.J. Cho, Blood flow in rigid tubes: thickness and slip velocity of plasma film at the wall. J. Appl. Physiol. 21, 27–32 (1966)Google Scholar
  106. 106.
    O. Hetland, A.B. Brovold, R. Holme, G. Gaudernack, H. Prydz, Thromboplastin (tissue factor) in plasma membranes of human monocytes. Biochem. J. 228(3), 735–743 (1985)CrossRefGoogle Scholar
  107. 107.
    M.F. Hockin, K.C. Jones, S.J. Everse, K.G. Mann, A model for the stoichiometric regulation of blood coagulation. J. Biol. Chem. 277(21), 18322–18333 (2002)CrossRefGoogle Scholar
  108. 108.
    M. Hoffman, Remodeling the blood coagulation cascade. J. Thromb. Thrombolysis 16(1–2), 17–20 (2003)CrossRefGoogle Scholar
  109. 109.
    C. Hougie, E.M. Barrow, J.M. Graham, Segregation of an hereditary hemorrhagic group heretofore called stable factor (SPCA), proconvertin, factor VII deficiency. J. Clin. Invest. 36, 485–496 (1957)CrossRefGoogle Scholar
  110. 110.
    W.H. Howell, E. Holt, Two new factors in blood coagulation: heparin and pro-antithrombin. Am. J. Physiol. 47, 228–241 (1918)Google Scholar
  111. 111.
    L. Hsieh, D. Nugent, Factor XIII deficiency. Haemophilia 14, 1190–1200 (2008)CrossRefGoogle Scholar
  112. 112.
    P.Y. Huang, J.D. Hellums, Aggregation and disaggregation kinetics of human blood platelets: part I. Development and validation of a population balance method. Biophys. J. 65(1), 334–343 (1993)Google Scholar
  113. 113.
    P.Y. Huang, J.D. Hellums, Aggregation and disaggregation kinetics of human blood platelets: part II. Shear-induced platelet aggregation. Biophys. J. 65(1), 344–353 (1993)Google Scholar
  114. 114.
    P.Y. Huang, J.D. Hellums, Aggregation and disaggregation kinetics of human blood platelets: part III. The disaggregation under shear stress of platelet aggregates. Biophys. J. 65(1), 354–361 (1993)Google Scholar
  115. 115.
    Y. Ikeda, M. Handa, K. Kawano, T. Kamata, M. Murata, Y. Araki, H. Anbo, Y. Kawai, K. Watanabe, I. Itagaki, K. Sakai, Z.M. Ruggeri, The role of von Willebrand Factor and Fibrinogen in platelet aggregation under varying shear stress. J. Clin. Invest. 87, 1234–1240 (1991)CrossRefGoogle Scholar
  116. 116.
    G.I.C. Ingram, The history of haemophilia. J. Clin. Pathol. 29(6), 469–479 (1976)CrossRefGoogle Scholar
  117. 117.
    J. Jesty, E. Beltrami, Positive feedbacks of coagulation. Their role in threshold regulation. Arterioscler. Thromb. Vasc. Biol. 25, 2463–2469 (2005)zbMATHCrossRefGoogle Scholar
  118. 118.
    K.C. Jones, K.G. Mann, A model for the tissue factor pathway to thrombin. II. A mathematical simulation. J. Biol. Chem. 269(37), 23367–23373 (1994)Google Scholar
  119. 119.
    G. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 3rd edn. (Oxford University Press, Oxford, 2013)zbMATHGoogle Scholar
  120. 120.
    C.J. Kastrup, F. Shen, M.K. Runyon, R.F. Ismagilov, Characterization of the threshold response of initiation of blood clotting to stimulus patch size. Biophys. J. 93, 2969–2977 (2007)CrossRefGoogle Scholar
  121. 121.
    A. Kauskot, M.F. Hoylaerts, Platelet receptors, in Antiplatelet Agents, Handbook of Experimental Pharmacology, ed. by P. Gresele, G.V.R. Born, C. Patrono, C.P. Page (eds.) (Springer, Berlin, Heidelberg, 2012), pp. 23–57Google Scholar
  122. 122.
    C. Kearon, S.R. Kahn, G. Agnelli, Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians evidence-based clinical practice guideline (8th edition). Chest 133, 454S–545S (2008)CrossRefGoogle Scholar
  123. 123.
    E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)zbMATHCrossRefGoogle Scholar
  124. 124.
    J.G. Kelton, T.E. Warkentin, Heparin-induced thrombocytopenia: historical perspective. Blood 112, 2607–2616 (2008)CrossRefGoogle Scholar
  125. 125.
    N. Key, M. Makris, D. O’Shaughnessy, D. Lillicrap (eds.), Practical Hemostasis and Thrombosis, 2nd edn. (Wiley-Blackwell, Hoboken, 2009)Google Scholar
  126. 126.
    M.A. Khanin, V.V. Semenov, A mathematical model of the kinetics of blood coagulation. J. Theor. Biol. 136, 127–134 (1989)MathSciNetCrossRefGoogle Scholar
  127. 127.
    P. Kleinbongard, R. Schulz, T. Rassaf, T. Lauer, A. Dejam, T. Jax, I. Kumara, P. Gharini, S. Kabanova, B. Özüyaman, H.G. Schnäurch, A. Gäodecke, A.A. Weber, M. Robenek, H. Robenek, W. Bloch, P. Rösen, M. Kelm, Red blood cells express a functional endothelial nitric oxide synthase. Blood 107, 2943–2951 (2006)CrossRefGoogle Scholar
  128. 128.
    C. Kleinstreuer, J.R. Buchanan, M. Lei, G.A. Truskey, Computational analysis of particle hemodynamics and prediction of the onset of arterial diseases, in Biomechanical Systems, Techniques and Applications, Volume II. Cardiovascular Techniques (CRC Press, West Palm Beach, 2001)Google Scholar
  129. 129.
    K. Knauer, R. Huber, Fibrinolysis and beyond: bridging the gap between local and systemic clot removal. Front. Neurol. 2 (2011). doi:10.3389/fneur.2011.00007Google Scholar
  130. 130.
    A.E. Kogan, D.V. Kardakov, M.A. Khanin, Analysis of the activated partial thromboplastin time test using mathematical modeling. Thromb. Res. 101(4), 299–310 (2001)CrossRefGoogle Scholar
  131. 131.
    F. Koller, A. Loeliger, F. Duckert, Experiments on a new clotting factor (factor VII). Acta Haematol. 6, 1–18 (1951)CrossRefGoogle Scholar
  132. 132.
    H. Kraut, E.K. Frey, E. Werle, Über die Inaktivierung des Kallikreins. Hoppe-Seyler’ s Z. Physiol. Chem. 192, 1–21 (1930)CrossRefGoogle Scholar
  133. 133.
    S. Krishnaswamy, The transition of prothrombin to thrombin. J. Thromb. Haemost. 11(01), 265–276 (2013). doi:10.1111/jth.12217CrossRefGoogle Scholar
  134. 134.
    A.L. Kuharsky, A.L. Fogelson, Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J. 80(3), 1050–1074 (2001)CrossRefGoogle Scholar
  135. 135.
    M.J. Lacombe, Deficit constitutionnel en un nouveau facteur de la coagulation intervenant au niveau de contact: le facteur “Flaujeac”. C. R. Hebd. Seances Acad. Sc. Ser. D. Sci. Nat. 280, 1039–1041 (1975)Google Scholar
  136. 136.
    K. Laki, L. Lorand, On the solubility of fibrin clots. Science 108, 280 (1948)CrossRefGoogle Scholar
  137. 137.
    M.R. Lassen, W. Ageno, L.C. Borris, Rivaroxaban versus enoxaparin for thrombophylaxix after total knee arthroplasty. N. Engl. J. Med. 358, 2776–2786 (2008)CrossRefGoogle Scholar
  138. 138.
    M.R. Lassen, A. Gallus, G.E. Raskob et al., Apixaban versus enoxaparin for thrombophylaxix after hip replacement. N. Engl. J. Med. 363, 2487–2498 (2010)CrossRefGoogle Scholar
  139. 139.
    I.J. Laurenzi, S.L. Diamond, Monte Carlo simulation of the heterotypic aggregation kinetics of platelets and neutrophils. Biophys. J. 77(3), 1733–1746 (1999)CrossRefGoogle Scholar
  140. 140.
    K. Leiderman, A.L. Fogelson, Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol. 28, 47–84 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  141. 141.
    R.J. Leipold, T.A. Bozarth, A.L. Racanelli, I.B. Dicker, Mathematical model of serine protease inhibition in the tissue factor pathway to thrombin. J. Biol. Chem. 270(43), 25383–25387 (1995)CrossRefGoogle Scholar
  142. 142.
    S.N. Levine, Enzyme amplifier kinetics. Science 152(3722), 651–653 (1966)CrossRefGoogle Scholar
  143. 143.
    B.B.C. Lim, E.H. Lee, M. Sotomayor, K. Schulten, Molecular basis of fibrin clot elasticity. Structure 16, 449–459 (2008)CrossRefGoogle Scholar
  144. 144.
    Y. Liu, L. Zhang, X. Wang, W.K. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics. Int. J. Numer. Methods Fluids 46(12), 1237–1252 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  145. 145.
    K. Lo, W.S. Denney, S.L. Diamond, Stochastic modeling of blood coagulation initiation. Pathophysiol. Haemost. Thromb. 34(2–3), 80–90 (2006)Google Scholar
  146. 146.
    I. Lopez-Vilchez, G. Escolar, M. Diaz-Ricart, B. Fuste, A.M. Galan, J.G. White, Tissue factor-enriched vesicles are taken up by platelets and induce platelet aggregation in the presence of factor VIIa. Thromb. Haemost. 97(2), 202–211 (2007)Google Scholar
  147. 147.
    R.G. MacFarlane, An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202(4931), 498–499 (1964)CrossRefGoogle Scholar
  148. 148.
    C. Malmsten, M. Hamberg, J. Svenson, B. Samuelsson, Physiological role of an endoperoxide in human platelets: hemostatic defect due to platelet Cyclo-Oxygenase deficiency. Proc. Natl. Acad. Sci. USA 72, 1446–1450 (1975)CrossRefGoogle Scholar
  149. 149.
    K.G. Mann, M.E. Nesheim, P.B. Tracy, L.S. Hibbard, J.W. Bloom, Assembly of the prothrombinase complex. Biophys. J. 37, 106–107 (1982)CrossRefGoogle Scholar
  150. 150.
    K.G. Mann, S. Butenas, K. Brummel, The dynamics of thrombin formation. Arterioscler. Thromb. Vasc. Biol. 23(1), 17–25 (2003)CrossRefGoogle Scholar
  151. 151.
    K.G. Mann, K. Brummel-Ziedins, T. Orfeo, S. Butenas, Models of blood coagulation. Blood Cells Mol. Dis. 36(2), 108–117 (2006)CrossRefGoogle Scholar
  152. 152.
    J.A. Marcum, The origin of the dispute over the discovery of heparin. J. Hist. Med. Allied Sci. 55, 37–66 (2000)CrossRefGoogle Scholar
  153. 153.
    V.J. Marder, W.C. Aird, J.S. Bennett, S. Schulman, G.C. White II (eds.), Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 6th edn. (Lippincott Williams & Wilkins, Wolters Kluwer, Philadelphia, 2013)Google Scholar
  154. 154.
    A.L. Marshal, J.L. Spivak, L.A. Boxer, S.J. Shattil, E.S. Henderson (eds.), Hematology: Landmark Papers of the Twentieth Century (Academic, London, 2000)Google Scholar
  155. 155.
    F. Martorana, A. Moro, On the kinetics of enzyme amplifier systems with negative feedback. Math. Biosci. 21, 77–84 (1974)zbMATHCrossRefGoogle Scholar
  156. 156.
    A.V. Mattioli, Heparin-induced thromboytopenia: a misdiagnosed clinical syndrome. Bol. SPHM 27, 5–10 (2012)Google Scholar
  157. 157.
    M. Maxey, B. Patel, Localized force representations for particles sedementing in Stokes flow. Int. J. Multiphase Flow 27(9), 1603–1626 (2001)zbMATHCrossRefGoogle Scholar
  158. 158.
    J. Mc Lean, The discovery of heparin. Circulation 19, 75–78 (1959)CrossRefGoogle Scholar
  159. 159.
    S. Melchionna, A model for red blood cells in simulations of large-scale blood flows. Macromol. Theory Simul. 20, 548–561 (2011)CrossRefGoogle Scholar
  160. 160.
    A.D. Michelson, Platelets, 3rd edn. (Elsevier Inc., London, 2013)Google Scholar
  161. 161.
    A.Y. Mitrophanov, J. Reifman, Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation. Thromb. Res. 128, 381–390 (2011)CrossRefGoogle Scholar
  162. 162.
    A.Y. Mitrophanov, A.S. Wolberg, J. Reifman, Kinetic model facilitates analysis of fibrin generation and its modulation by clotting factors: implications for hemostasis-enhancing therapies. Mol. BioSyst. 10, 2347–2357 (2004)CrossRefGoogle Scholar
  163. 163.
    A.Y. Mitrophanov, F.R. Rosendaal, J. Reifman, Therapeutic correction of thrombin generation in dilution-induced coagulopathy: computational analysis based on a data set of healthy subjects. J. Trauma Acute Care Surg. 73, S95YS102 (2012)Google Scholar
  164. 164.
    J.L. Moake, Thrombotic microangiopathies. New Engl. J. Med. 347, 589–600 (2002)CrossRefGoogle Scholar
  165. 165.
    G. Moiseyev, S. Givli, P.Z. Bar-Yoseph, Fibrin polymerization in blood coagulation: a statistical model. J. Biomech. 46(1), 26–30 (2013)CrossRefGoogle Scholar
  166. 166.
    P. Monage (ed.), Haemostasis: Methods and Protocols. Methods in Molecular Biology, vol. 992 (Springer Science + Business Media, New York, 2013)Google Scholar
  167. 167.
    D.D. Monkovict, P.B. Tracy, Activation of human Factor V by Factor Xa and thrombin. Biochemistry 29, 1118–1128 (1990)CrossRefGoogle Scholar
  168. 168.
    D.M. Monroe, Factor VIIa: on its own and loving it. Blood 120, 705–707 (2012)CrossRefGoogle Scholar
  169. 169.
    P. Morawitz, Die Chemie der Blutgerinnung. Ergebn. Physiol. 4, 307–422 (1905)CrossRefGoogle Scholar
  170. 170.
    D. Mori, K. Yano, K.-I. Tsubota, T. Ishikawa, S. Wada, T. Yamaguchi, Computational study on effect of red blood cells on primary thrombus formation. Thromb. Res. 123, 114–121 (2008)CrossRefGoogle Scholar
  171. 171.
    A. Moro, A.T. Bharucha-Reid, On the kinetics of enzyme amplifier systems. Math. Biosci. 5, 391–402 (1969)zbMATHCrossRefGoogle Scholar
  172. 172.
    N.J. Mutch, L. Thomas, N.R. Moore, K.M. Lisiak, N.A. Booth, TAFIa, PAI-1 and alpha 2-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J. Thromb. Haemost. 5, 812–817 (2007)CrossRefGoogle Scholar
  173. 173.
    M.E. Nesheim, W.M. Canfield, W. Kisiel, K.G. Mann, Studies of the capacity of factor Xa to protect factor Va from inactivation by activated protein C. J. Biol. Chem. 257(3), 1443–1447 (1982)Google Scholar
  174. 174.
    L.M. O’Brien, M. Mastri, P.J. Fay, Regulation of Factor VIIIa by human activated protein C and protein S: inactivation of cofactor in the intrinsic factor Xase. Hemost. Thromb. Vasc. Biol. 95, 1714–1720 (2000)Google Scholar
  175. 175.
    T. Orfeo, S. Butenas, K.E. Brummel-Ziedins, K.G. Mann, The Tissue Factor requirement in blood coagulation. J. Biol. Chem. 280, 42887–42896 (2005)CrossRefGoogle Scholar
  176. 176.
    R. Ouared, B. Chopard, B. Stahl, D.A. R’́ufenacht, H. Yilmaz, G. Courbebaisse, Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm. Comput. Phys. Commun. 179(1–3), 128–131 (2008)Google Scholar
  177. 177.
    C.A. Owen, A History of Blood Coagulation (Mayo Foundation for Medical Education and Research, Rochester, MN, 2001)Google Scholar
  178. 178.
    P.A. Owren, The coagulation of blood. Investigations on a new clotting factor. Acta Med. Scand. 194, 521–549 (1947)Google Scholar
  179. 179.
    P.A. Owren, Parahaemophilia. Haemorragic diathesis due to absence of a previously unknown clotting factor. Lancet 1, 446–451 (1947)Google Scholar
  180. 180.
    O. Panes, V. Matus, C.G. Sáez, T. Quiroga, J. Pereira, D. Mezzano, Human platelets synthesize and express functional tissue factor. Blood 109, 5242–5250 (2007)CrossRefGoogle Scholar
  181. 181.
    M.A. Panteleev, M.V. Ovanesov, D.A. Kireev, A.M. Shibeko, E.I. Sinauridze, N.M. Ananyeva, A.A. Butylin, E.L. Saenko, F.I. Ataullakhanov, Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively. Biophys. J. 90(5), 1489–1500 (2006)CrossRefGoogle Scholar
  182. 182.
    V. Pappu, P. Bagchi, 3D computational modeling and simulation of leukocyterolling adhesion and deformation. Comput. Biol. Med. 38, 738–753 (2008)CrossRefGoogle Scholar
  183. 183.
    V. Pappu, S.K. Doddi, P. Bagchi, A computational study of leukocyte adhesion and its effect on flow pattern in microvessels. J. Theor. Biol. 254, 483–498 (2008)MathSciNetCrossRefGoogle Scholar
  184. 184.
    A.J. Patek, R.H. Stetson, Hemophilia. I. The abnormal coagulation of the blood and its relation to the blood platelets. J. Clin. Invest. 15, 531–542 (1936)Google Scholar
  185. 185.
    A.J. Patek, F.H.L. Taylor, Hemophilia. Some properties of a substance obtained from normal human plasma effective in accelerating the coagulation of hemophilic blood. J. Clin. Invest. 16, 113–124 (1937)Google Scholar
  186. 186.
    C. Patrono, G. Ciabattoni, E. Pinca, F. Pugliese, G. Castrucci, A. De Salvo, M.A. Satta, B. A. Peskar, Low-dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb. Res. 17, 317–327 (1980)CrossRefGoogle Scholar
  187. 187.
    L. Pauling, H.A. Itano, S.J. Singer, I.C. Wells, Sickle cell anemia, a molecular disease. Science 110, 543–548 (1949)CrossRefGoogle Scholar
  188. 188.
    J. Pavlova, Mathematical modelling and numerical simulations of blood coagulation. PhD Thesis, University of Lisbon (2014)Google Scholar
  189. 189.
    J. Pavlova, A. Fasano, J. Janela, A. Sequeira, Numerical validation of a synthetic cell-based model of blood coagulation. J. Theor. Biol. 380, 367–379 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  190. 190.
    J. Pavlova, A. Fasano, A. Sequeira, Numerical simulations of a reduced model for blood coagulation. Z. Angew. Math. Phys. (ZAMP) 67(2), 28 (2016). doi:10.1007/s00033-015-0610-2Google Scholar
  191. 191.
    H. Petscheck, D. Adamis, A. Kantrowitz, Stagnation flow thrombus formation. Trans. ASAIO 14, 256–260 (1968)Google Scholar
  192. 192.
    I.V. Pivkin, P.D. Richardson, G. Karniadakis, Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. PNAS 103(46), 17164–17169 (2006)CrossRefGoogle Scholar
  193. 193.
    I.V. Pivkin, P.D. Richardson, G. Karniadakis, Effect of red blood cells on platelet aggregation. IEEE Eng. Med. Biol. Mag. 28(2), 32–37 (2009)CrossRefGoogle Scholar
  194. 194.
    A. Pizard, C. Richer, N. Bouby, N. Picard, P. Meneton, M. Azizi, F. Alhenc-Gelas, Genetic deficiency in tissue kallikrein activity in mouse and man: effect on arteries, heart and kidney. Biol. Chem. 389(6), 701–706 (2008)CrossRefGoogle Scholar
  195. 195.
    A. Podmore, M. Smith, G. Savidge, A. Alhaq, Real-time quantitative PCR analysis of factor XI mRNA variants in human platelets. J. Thromb. Haemost. 2(10), 1713–1719 (2004)CrossRefGoogle Scholar
  196. 196.
    A.V. Pokhilko, F.I. Ataullakhanov, Contact activation of blood coagulation: trigger properties and hysteresis. J. Theor. Biol. 191(2), 213–219 (1998)CrossRefGoogle Scholar
  197. 197.
    R.B. Potts, Some generalized order-disorder transformations. Proc. Camb. Philos. Soc. 48, 106–109 (1952)zbMATHMathSciNetCrossRefGoogle Scholar
  198. 198.
    D. Raabe, Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering. Model. Simul. Mater. Sci. Eng. 12(6), R13–R46 (2004)CrossRefGoogle Scholar
  199. 199.
    K.R. Rajagopal, A.R. Srinivasa, A thermodynamic framework for rate type fluid models. J. Non-Newtonian Fluid Mech. 88(3), 207–227 (2000)zbMATHCrossRefGoogle Scholar
  200. 200.
    O.D. Ratnoff, E.W. Davie, The purification of activated Hageman factor (activated Factor XII). Biochemistry 1, 967–974 (1962)CrossRefGoogle Scholar
  201. 201.
    O.D. Ratnoff, J.M. Rosenblum, Role of Hageman factor in the initiation of clotting by glass: evidence that glass frees Hageman factor from inhibition. Am. J. Med. 25, 160–168 (1958)CrossRefGoogle Scholar
  202. 202.
    O.D. Ratnoff, E.W. Davie, D.L. Mallett, Studies on the action of Hageman factor: evidence that activated Hageman factor in turn activates plasma thromboplastin antecedent. J. Clin. Invest. 40, 803–819 (1961)CrossRefGoogle Scholar
  203. 203.
    O.D. Ratnoff, R.J. Busse, R.P. Sheon, The demise of John Hageman. New Engl. J. Med. 279, 760–761 (1968)CrossRefGoogle Scholar
  204. 204.
    R.L. Reddick, T.R. Griggs, M.A. Lamb, K.M. Brinkhous, Platelet adhesion to damaged coronary arteries: comparison in normal and von Willebrand disease swine. Proc. Natl. Acad. Sci. USA 79(16I), 5076–5079 (1982)CrossRefGoogle Scholar
  205. 205.
    D. Ribatti, E. Crivellato, Giulio Bizzozero and the discovery of platelets. Leuk. Res. 31, 1339–1441 (2007)CrossRefGoogle Scholar
  206. 206.
    P. Ricciardi-Castagnoli (ed.), Dendritic Cells in Fundamental and Clinical Immunology (Plenum Press, New York, 1997)Google Scholar
  207. 207.
    F.R. Rickles, S. Patierno, P.M. Fernandez, Tissue factor, thrombin, and cancer. Chest 124, 58S–68S (2003)CrossRefGoogle Scholar
  208. 208.
    J.P. Riddel Jr., B.E. Aouizerat, C. Miaskowski, D.P. Lillicrap, Theories of blood coagulation. J. Pediatr. Oncol. Nurs. 24(3),123–131 (2007)CrossRefGoogle Scholar
  209. 209.
    J. Rivera, M.L. Lozano, L. Navarro-Núñez, V. Vicente, Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94(5), 700–711 (2009)CrossRefGoogle Scholar
  210. 210.
    H.R. Roberts, Oscar Ratnoff: his contributions to the golden era of coagulation research. Br. J. Haematol. 122(2), 180–192 (2003)CrossRefGoogle Scholar
  211. 211.
    F. Rodeghiero, R. Stasi, T. Gernsheimer, M. Michel, D. Provan, D.M. Arnold, J.B. Bussel, D.B. Cines, B.H. Chong, N. Cooper, B. Godeau, K. Lechner, M.G. Mazzucconi, R. McMillan, M.A. Sanz, P. Imbach, V. Blanchette, T. Kühne, M. Ruggeri, J.N. George, Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood 113(11), 2386–93 (2009)CrossRefGoogle Scholar
  212. 212.
    R.L. Rosenthal, O.H. Dreskin, N. Rosenthal, New hemophilia-like disease caused by deficiency of a third plasma thromboplastin factor. Proc. Soc. Exp. Biol. Med. 82, 171–174 (1953)CrossRefGoogle Scholar
  213. 213.
    R. Rosner, Medicine in the Bible and Talmud ( KTAV, New York, 1937)Google Scholar
  214. 214.
    Z.M. Ruggeri, Perspective series: cell adhesion and vascular biology. J. Clin. Invest. 99, 559–564 (1997)CrossRefGoogle Scholar
  215. 215.
    E.A. Ryan, L.F. Mockros, J.W. Weisel, L. Lorand, Structural origin of fibrin clot rheology. Biophys. J. 77, 2813–2826 (1999)CrossRefGoogle Scholar
  216. 216.
    J.E. Sadler, Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem. 67, 395–424 (1998)CrossRefGoogle Scholar
  217. 217.
    B. Savage, J.J. Sixmad, Z.M. Ruggeri, Functional self-association of von Willebrand factor during platelet adhesion under flow. PNAS 99(1), 425–430 (2002)CrossRefGoogle Scholar
  218. 218.
    A.H. Schmaier, G. LaRusch, Factor XII: new life for an old protein. Thromb. Haemost. 104(5), 915–918 (2010)CrossRefGoogle Scholar
  219. 219.
    A.H. Schmaier, L.D. Dahl, A.J. Rozemuller, R.A. Roos, S.L. Wagner, R. Chung, W.E. Van Nostrand, Protease nexin-2/amyloid beta protein precursor. A tight-binding inhibitor of coagulation factor IXa. J. Clin. Invest. 92(5), 2540–2545 (1993)Google Scholar
  220. 220.
    H.A.A. Schmidt, Über den Faserstoff und die. Ursachen seiner Gerinnung. Archiv. f’́ur Anatomie, Physiologie und wissenschaftliche Medicin, Leipzig, 545–587 (1861)Google Scholar
  221. 221.
    H.A.A. Schmidt, Weiteres über den Faserstoff und die Ursachen seiner Gerinnung. Archiv fr Anatomie, Physiologie und wissenschaftliche Medicin, Leipzig, 428–469 (1862)Google Scholar
  222. 222.
    S. Schulman, H. Eriksson, S. Goldhaber et al., Dabigratan or warfarin for extended manteinance therapy of venous thromboembolism. J. Thromb. Haemost. 9, O-TH-033 (2011)Google Scholar
  223. 223.
    W.H. Seegers, Blood clotting mechanisms: three basic reactions. Annu. Rev. Physiol. 31, 269–294 (1969)CrossRefGoogle Scholar
  224. 224.
    A. Sequeira, R.F. Santos, T. Bodnár, Blood coagulation dynamics: mathematical modeling and stability results. Math. Biosci. Eng. 8(2), 425–443 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  225. 225.
    V. Shankar, G.B. Wright, A.L. Fogelson, R.M. Kirbya, A study of different modeling choices for simulating platelets within the immersed boundary method. Appl. Numer. Math. 63, 58–77 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  226. 226.
    Z. Shariat-Madar, F. Mahdi, A.H. Schmaier, Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J. Biol. Chem. 277(20), 17962–179629 (2002)CrossRefGoogle Scholar
  227. 227.
    E.A. Shavlyugin, L.G. Hanin, M.A. Khanin, Dynamics of pathologic clot formation: a mathematical model. J. Theor. Biol. 340, 96–104 (2014)MathSciNetCrossRefGoogle Scholar
  228. 228.
    G.J. Shaw, J.M. Meunier, S.L. Huang, C.J. Lindsell, D.D. McPherson, C.K. Holland, Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposome. Thromb. Res. 124(3), 306–310 (2009)CrossRefGoogle Scholar
  229. 229.
    F. Shen, C.J. Kastrup, Y. Liu, R.F. Ismagilov, Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arterioscler. Thromb. Vasc. Biol. 28, 2035–2041 (2008)CrossRefGoogle Scholar
  230. 230.
    F. Shen, R.R. Pompano, C.J. Kastrup, R.F. Ismagilov, Confinement regulates complex biochemical networks: initiation of blood clotting by “diffusion acting”. Biophys. J. 97, 2137–2145 (2009)CrossRefGoogle Scholar
  231. 231.
    A.M. Shibeko, E.S. Lobanova, M.A. Panteleev, F.I. Ataullakhanov, Blood flow controls coagulation onset via the positive feedback of factor vii activation by factor XA. BMC Syst. Biol. 4, 5 (2010)CrossRefGoogle Scholar
  232. 232.
    A.M. Shibeko, S.A. Woodle, T.K. Lee, M.V. Ovanesov, Unifying the mechanism of recombinant FVIIa action: dose dependence is regulated differently by tissue factor and phospholipids. Blood 120(4), 891–899 (2012)CrossRefGoogle Scholar
  233. 233.
    S.A. Smith, The cell-based model of coagulation: State-Of-The-Art Review. J. Vet. Emerg. Crit. Care 19(1), 310 (2009)Google Scholar
  234. 234.
    M.V. Smoluchowski, Drei vorträge über diffusion, brownsche bewegung und koagulation von kolloidteilchen. Z. Phys.17, 557–585 (1916)Google Scholar
  235. 235.
    M. Spreafico, M. Peyvandi, Combined FV and FVIII deficiency. Hemophilia 14, 1201–1208 (2008)CrossRefGoogle Scholar
  236. 236.
    E. Stavrou, A.H. Schmaier, Factor XII: what does it contribute to our understanding of the physiology and pathophysiology of hemostasis & thrombosis. Thromb. Res. 125(3), 210–215 (2010)CrossRefGoogle Scholar
  237. 237.
    H. Stormorken, Paul A. Owren & the Golden Era of Haemostasis (Gazettebok, Sandvika, 2005)Google Scholar
  238. 238.
    K. Suzuki, J. Stenflo, B. Dahlbäck, B. Teodorsson, Inactivation of human coagulation factor V by activated protein C. J. Biol. Chem. 258(3), 1914–1920 (1983)Google Scholar
  239. 239.
    K. Tanaka, E.W. Davie (eds.), Recent Advances in Thrombosis and Hemostasis (Springer, New York, 2008)Google Scholar
  240. 240.
    A.N. Tikhonov, Systems of differential equations containing small parameters multiplying the derivatives. Mat. Sborn. 31, 575–586 (1952)Google Scholar
  241. 241.
    The EINSTEIN-PE Investigators, Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N. Engl. J. Med. 366, 1287–1297 (2012)Google Scholar
  242. 242.
    A.A. Tokarev, Y.V. Krasotkina, M.V. Ovanesov, M.A. Panteleev, M.A. Azhigirova, V.A. Volpert, F.I. Ataullakhanov, A.A. Butilin, Spatial dynamics of contact-activated fibrin formation in vitro and in silico in haemophilia B: effects of severity and haemophilia B treatment. Math. Model. Nat. Phenom. 1(2), 124–137 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  243. 243.
    A. Tokarev, I. Sirakov, G. Panasenko, V. Volpert, E. Shnol, A. Butylin, F. Ataullakhanov, Continuous mathematical model of platelet thrombus formation in blood flow. Russ. J. N. Anal. Math. Model. 27(2), 191–212 (2012)zbMATHMathSciNetGoogle Scholar
  244. 244.
    A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert, Modelling of thrombus growth in flow with a DPD-PDE method. J. Theor. Biol. 337, 30–41 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  245. 245.
    S.D. Treadwell, B. Thanvi, T.G. Robinson, Stroke in pregnancy and the puerperium. Postgrad. Med. J. 84, 238–245 (2008)CrossRefGoogle Scholar
  246. 246.
    A. Tripodi, The laboratory and the new oral anticoagulants. Clin. Chem. 59(2), 353–362 (2013)CrossRefGoogle Scholar
  247. 247.
    A. Tripodi, G. Palareti, New anticoagulant drugs for the treatment of venous thromboembolism and stroke prevention in atrial fibrillation. J. Intern. Med. 271, 554–565 (2012)CrossRefGoogle Scholar
  248. 248.
    A. Trousseau, Phlegmasia alba dolens: Clinique medicale de lHotel-Dieu de Paris, 2nd edn. (J. B. Balliere et Fils, Paris, 1865), pp. 654–712Google Scholar
  249. 249.
    V.T. Turitto, H.R. Baumgartner, Platelet deposition on subendothelium exposed to flowing blood: mathematical analysis of physical parameters. Trans. Am. Soc. Artif. Intern. Org. 21, 593–601 (1975)Google Scholar
  250. 250.
    B.O. Villoutreix, Structural bioinformatics: methods, concepts and applications to blood coagulation proteins. Curr. Protein Pept. Sci. 3, 341–364 (2002)CrossRefGoogle Scholar
  251. 251.
    B.O. Villoutreix, O. Sperandio, In silico studies of blood coagulation proteins: from mosaic proteases to nonenzymatic cofactor inhibitors. Curr. Opin. Struct. Biol. 20, 168–179 (2010)CrossRefGoogle Scholar
  252. 252.
    R. Virchow, Faserstoffarten und fibrinogene Substanz. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 1, 581 (1847)Google Scholar
  253. 253.
    R.L.K. Virchow, Thrombose und Embolie. Gefässentzündung und septische infektion. gesammelte abhandlungen zur wissenschaftlichen medicin (Von Meidinger & Sohn., Frankfurt am Main, 1856), pp. 219–732Google Scholar
  254. 254.
    C.Q. Xu, Y.J. Zeng, H. Gregersen, Dynamic model of the role of platelets in the blood coagulation system. Med. Eng. Phys. 24, 587–593 (2002)CrossRefGoogle Scholar
  255. 255.
    C. Xu, X.H. Xu, Y. Zeng, Y.W. Chen, Simulation of a mathematical model of the role of the TFPI in the extrinsic pathway of coagulation. Comput. Biol. Med. 35(5), 435–445 (2005)CrossRefGoogle Scholar
  256. 256.
    Z. Xu, N. Chen, M.M. Kamocka, E.D. Rosen, M. Alber, A multiscale model of thrombus development. J. R. Soc. Interface 5, 705–722 (2008)CrossRefGoogle Scholar
  257. 257.
    Z. Xu, N. Chen, S.C. Shadden, J.E. Marsden, M.M. Kamocka, E.D. Rosen, M. Alber, Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 5(4), 769–779 (2009)CrossRefGoogle Scholar
  258. 258.
    Z. Xu, M. Kamocka, M. Alber, E.D. Rosen, Computational approaches to studying thrombus development. Arterioscler. Thromb. Vasc. Biol. 31, 500–505 (2011)CrossRefGoogle Scholar
  259. 259.
    Z. Xu, O. Kim, M. Kamocka, E.D. Rosen, M. Alber, Multiscale models of thrombogenesis. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 237–246 (2012)CrossRefGoogle Scholar
  260. 260.
    D. Xu, E. Kaliviotis, A. Munjiza, E. Avital, C. Ji, J. Williams, Large scale simulation of red blood cell aggregation in shear flows. J. Biomech. 46, 1810–1817 (2013)CrossRefGoogle Scholar
  261. 261.
    K. Yano, D. Mori, K. Tsubota, T. Ishikawa, S. Wada, T. Yamaguchi, Analysis of destruction process of the primary thrombus under the influence of the blood flow. J. Biomech. Sci. Eng. 2(1), 3–44 (2007)CrossRefGoogle Scholar
  262. 262.
    A. Yazdani, G.E. Karniadakis, Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction. Soft Matter 12, 4339–4351 (2016). doi:10.1039/C6SM00154HCrossRefGoogle Scholar
  263. 263.
    A. Yazdani, H. Li, J.D. Humphrey, G.E. Karniadakis, A general shear-dependent model for thrombus formation. PLoS Comput. Biol. 13(1), e1005291 (2017). doi:10.1371/journal.pcbi.1005291Google Scholar
  264. 264.
    M.E. Young, P.A. Carroad, R.L. Bell, Estimation of diffusion coefficients of proteins. Biotechnol. Bioeng. 22(5), 947–955 (1980)CrossRefGoogle Scholar
  265. 265.
    C. Wagner, P. Steffen, S. Svetina, Aggregation of red blood cells: from rouleaux to clot formation. C. R. Phys. 14(6), 459–469 (2013)CrossRefGoogle Scholar
  266. 266.
    F.J. Walburn, J. Schneck, A constitutive equation for whole human blood. Biorheology 13, 201–210 (1978)CrossRefGoogle Scholar
  267. 267.
    F.J. Walker, P.W. Sexton, C.T. Esmon, The inhibition of blood coagulation by activated Protein C through the selective inactivation of activated Factor V. Biochim. Biophys. Acta 571, 333 (1979)CrossRefGoogle Scholar
  268. 268.
    P.N. Walsh, Roles of platelets and factor XI in the initiation of blood coagulation by thrombin. Thromb. Haemost. 86, 75–82 (2001)Google Scholar
  269. 269.
    D. Wardrop, D. Keeling, The story of the discovery of heparin and warfarin. Br. J. Haematol. 141, 757–763 (2008)CrossRefGoogle Scholar
  270. 270.
    H.J. Weiss, Flow-related platelet deposition on subendothelium. Thromb. Haemost. 74, 117–122 (1995)Google Scholar
  271. 271.
    F.F. Weller, Platelet deposition in non-parallel flow: influence of shear stress and changes in surface reactivity. J. Math. Biol. 57(3), 333–359 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  272. 272.
    F.F. Weller, A free boundary problem modeling thrombus growth: model development and numerical simulation using the level set method. J. Math. Biol. 61(6), 805–818 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  273. 273.
    N.K. Wenger, Clinical characteristics of coronary heart disease in women: emphasis on gender differences. Cardiovasc. Res. 53(3), 558–567 (2002)CrossRefGoogle Scholar
  274. 274.
    J.G. White, G. Escolar, The blood platelet open canalicular system: a two-way street. Eur. J. Cell Biol. 56(2), 233–242 (1991)Google Scholar
  275. 275.
    G.M. Willems, T. Lindhout, W.T. Hermens, H.C. Hemker, Simulation model for thrombin generation in plasma. Haemostasis 21(4), 197–207 (1991)Google Scholar
  276. 276.
    A. Wiskott, Familiarer, angeborener Morbus Werlhofii. Monatsschrift Kinderheilkunde 68, 212–216 (1937)Google Scholar
  277. 277.
    I.S. Wright, The nomenclature of blood clotting factors. Can. Med. Assoc. J. 86, 373–374 (1962)Google Scholar
  278. 278.
    J. Wu, C.K. Aidun, Simulating 3D deformable particle suspensions using lattice Boltzmann equation with external boundary force. Int. J. Numer. Methods Fluids 62(7), 202–2019 (2010)zbMATHGoogle Scholar
  279. 279.
    K.D. Wuepper, Prekallikrein deficiency in man. J. Exp. Med. 138, 1345–1355 (1973)CrossRefGoogle Scholar
  280. 280.
    K.D. Wuepper, C.G. Cochrane, Plasma Prekallikrein: isolation, characterization, and mechanism of activation. J. Exp. Med. 135, 1–20 (1972)CrossRefGoogle Scholar
  281. 281.
    K.D. Wuepper, D.R. Miller, M.J. Lacombe, Flaujeac trait. Deficiency of human plasma kininogen. J. Clin. Invest. 56(6), 1663–1672 (1975)CrossRefGoogle Scholar
  282. 282.
    V.I. Zarnitsina, A.V. Pokhilko, F.I. Ataullakhanov, A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description. Thromb. Res. 84(4), 225–236 (1996)CrossRefGoogle Scholar
  283. 283.
    V.I. Zarnitsina, A.V. Pokhilko, F.I. Ataullakhanov, A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results. Thromb. Res. 84(5), 333–344 (1996)CrossRefGoogle Scholar
  284. 284.
    V.I. Zarnitsina, F.I. Ataullakhanov, A.I. Lobanov, O.L. Morozova, Dynamics of spatially nonuniform patterning in the model of blood coagulation. Chaos 11(1), 57–70 (2001)zbMATHCrossRefGoogle Scholar
  285. 285.
    Y. Zhang, J.M. Scandura, W.E. Van Nostrand, P.N. Walsh, The mechanism by which heparin promotes the inhibition of coagulation factor XIa by protease nexin-2. J. Biol. Chem. 272(42), 26139–26144 (1997)CrossRefGoogle Scholar
  286. 286.
    J. Zhang, P.C. Johnson, A.S. Popel, An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its applicationto microscopic blood flows. Phys. Biol. 4, 285–295 (2007)CrossRefGoogle Scholar
  287. 287.
    P. Zhang, C. Gao, N. Zhang, M.J. Slepian, Y. Deng, D. Bluestein, Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell. Mol. Bioeng. 7(4), 552–574 (2014)CrossRefGoogle Scholar
  288. 288.
    R.F. Zwaal, H.C. Hemker, Blood Coagulation (Elsevier Science Publisher, London, 1986)Google Scholar
  289. 289.
    R.F. Zwaal, P. Comfurius, E.M. Bevers, Surface exposure of phosphatidylserine in pathological cells. Cell Mol. Life Sci. 62(9), 971–988 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonio Fasano
    • 1
  • Adélia Sequeira
    • 2
  1. 1.Fabbrica Italiana Apparecchi Biomedicali (FIAB)Università degli Studi di FirenzeFirenzeItaly
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations