Skip to main content

Microfluidics in Cell and Tissue Studies

  • Chapter
  • First Online:
Book cover Tumor Organoids

Abstract

The central challenge inherent to conventional cell culture systems in general and tumor systems in particular is that any but the most rudimentary studies requires an enormous amount of infrastructure and handling capabilities to investigate numerous, interdependent variables in discrete samples. In addition, analysis of outcomes is both separate and potentially challenging. Significant strides have been made to address both of these challenges through the use of microfluidic technologies and cell culture techniques toward the goal of an integrated delivery and assessment platform that recapitulates in vivo conditions. Here, we review microfluidic approaches that enable the study of cells and cell culture, with specific applications to cancer cells and tumor organoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate AR, Hung T, Sperling RA et al (2013) DNA sequence analysis with droplet-based microfluidics. Lab Chip 13:4864–4869. doi:10.1039/c3lc50905b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albrecht DR, Tsang VL, Sah RL, Bhatia SN (2005) Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5:111–118. doi:10.1039/b406953f

    Article  CAS  PubMed  Google Scholar 

  3. Anderson JR, Chiu DT, Jackman RJ et al (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164. doi:10.1021/ac9912294

    Article  CAS  PubMed  Google Scholar 

  4. Brouzes E, Medkova M, Savenelli N et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci 106:14195–14200. doi:10.1073/pnas.0903542106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng C-M, Martinez AW, Gong J et al (2010) Paper-based ELISA. Angew Chem Int Ed 49:4771–4774. doi:10.1002/anie.201001005

    Article  CAS  Google Scholar 

  6. Chen J, Zheng Y, Tan Q et al (2011) Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells. Lab Chip 11:3174–3181. doi:10.1039/C1LC20473D

    Article  CAS  PubMed  Google Scholar 

  7. Chikkaveeraiah BV, Mani V, Patel V et al (2011) Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens Bioelectron 26:4477–4483. doi:10.1016/j.bios.2011.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi D-H, Yoon G-W, Park JW et al (2015) Fabrication of a membrane filter with controlled pore shape and its application to cell separation and strong single cell trapping. J Micromech Microeng 25:105007. doi:10.1088/0960-1317/25/10/105007

    Article  Google Scholar 

  9. Cho Y, Kim HS, Frazier AB et al (2009) Whole-cell impedance analysis for highly and poorly metastatic cancer cells. J Microelectromech Syst 18:808–817. doi:10.1109/JMEMS.2009.2021821

    Article  Google Scholar 

  10. Chung S, Sudo R, Mack PJ et al (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9:269–275. doi:10.1039/b807585a

    Article  CAS  PubMed  Google Scholar 

  11. Clayton AHA, Tavarnesi ML, Johns TG (2007) Unligated epidermal growth factor receptor forms higher order oligomers within microclusters on A431 cells that are sensitive to tyrosine kinase inhibitor binding. Biochemistry (Mosc) 46:4589–4597. doi:10.1021/bi700002b

    Article  CAS  Google Scholar 

  12. Cooksey GA, Atencia J (2014) Pneumatic valves in folded 2D and 3D fluidic devices made from plastic films and tapes. Lab Chip 14:1665–1668. doi:10.1039/c4lc00173g

    Article  CAS  PubMed  Google Scholar 

  13. Deiss FT, Derda R, Mazzeo A, et al (2013) 96-well, paper-based platform for high-throughput testing of the effect of soluble compounds on 3D cell cultures.

    Google Scholar 

  14. Derda R, Laromaine A, Mammoto A et al (2009) Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci 106:18457–18462. doi:10.1073/pnas.0910666106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Derda R, Tang SKY, Laromaine A et al (2011) Multizone paper platform for 3D cell cultures. PLoS One 6:e18940. doi:10.1371/journal.pone.0018940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dharmasiri U, Njoroge SK, Witek MA et al (2011) High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem 83:2301–2309. doi:10.1021/ac103172y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6:1445–1449. doi:10.1039/b605937f

    Article  PubMed  Google Scholar 

  18. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. doi:10.1021/ac980656z

    Article  CAS  PubMed  Google Scholar 

  19. Eagle H (1955) Nutrition needs of mammalian cells in tissue culture. Science 122:501–514

    Article  CAS  PubMed  Google Scholar 

  20. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin-G. Immunochemistry 8:871. doi:10.1016/0019-2791(71)90454-X

    Article  CAS  PubMed  Google Scholar 

  21. Eriksson E, Enger J, Nordlander B et al (2006) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7:71–76. doi:10.1039/B613650H

    Article  PubMed  Google Scholar 

  22. Eriksson E, Sott K, Lundqvist F et al (2010) A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip 10:617–625. doi:10.1039/b913587a

    Article  CAS  PubMed  Google Scholar 

  23. Esch MB, Sung JH, Yang J et al (2012) On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic “body-on-a-chip” devices. Biomed Microdevices 14:895–906. doi:10.1007/s10544-012-9669-0

    Article  CAS  PubMed  Google Scholar 

  24. Eteshola E, Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens Actuators B-Chem 72:129–133. doi:10.1016/S0925-4005(00)00640-7

    Article  CAS  Google Scholar 

  25. Frey O, Misun PM, Fluri DA et al (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun. doi:10.1038/ncomms5250

  26. Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1:76–82. doi:10.1039/b103933b

    Article  CAS  PubMed  Google Scholar 

  27. Gel M, Kimura Y, Kurosawa O et al (2010) Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array. Biomicrofluidics. doi:10.1063/1.3422544

  28. Gey GO (1954) Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture. Harvey Lect 50:154–229

    PubMed  Google Scholar 

  29. Gómez-Sjöberg R, Leyrat AA, Pirone DM et al (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563. doi:10.1021/ac071311w

    Article  PubMed  Google Scholar 

  30. Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816. doi:10.1038/nature01935

    Article  CAS  PubMed  Google Scholar 

  31. Guo P, Hall EW, Schirhagl R et al (2012) Microfluidic capture and release of bacteria in a conical nanopore array. Lab Chip 12:558–561. doi:10.1039/c2lc21092d

    Article  CAS  PubMed  Google Scholar 

  32. Gu W, Zhu X, Futai N et al (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci U S A 101:15861–15866. doi:10.1073/pnas.0404353101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han C, Zhang Q, Ma R et al (2010) Integration of single oocyte trapping, in vitrofertilization and embryo culture in a microwell-structured microfluidic device. Lab Chip 10:2848–2854. doi:10.1039/C005296E

    Article  CAS  PubMed  Google Scholar 

  34. Han KN, Li CA, Seong GH (2013) Microfluidic chips for immunoassays. Annu Rev Anal Chem 6:119–141. doi:10.1146/annurev-anchem-062012-092616

    Article  CAS  Google Scholar 

  35. Han Z, Li W, Huang Y, Zheng B (2009) Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. Anal Chem 81:5840–5845. doi:10.1021/ac900811y

    Article  CAS  PubMed  Google Scholar 

  36. Harrison RG, Greenman MJ, Mall FP, Jackson CM (1907) Observations of the living developing nerve fiber. Anat Rec 1:116–128. doi:10.1002/ar.1090010503

    Article  Google Scholar 

  37. Herricks T, Antia M, Rathod PK (2009) Deformability limits of Plasmodium falciparum-infected red blood cells. Cell Microbiol 11:1340–1353. doi:10.1111/j.1462-5822.2009.01334.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hosokawa M, Hayata T, Fukuda Y et al (2010) Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal Chem 82:6629–6635. doi:10.1021/ac101222x

    Article  CAS  PubMed  Google Scholar 

  39. Jang K-J, Suh K-Y (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10:36–42. doi:10.1039/b907515a

    Article  CAS  PubMed  Google Scholar 

  40. Kaneshiro ES, Wyder MA, Wu Y-P, Cushion MT (1993) Reliability of calcein acetoxy methyl ester and ethidium homodimer or propidium iodide for viability assessment of microbes. J Microbiol Methods 17:1–16. doi:10.1016/S0167-7012(93)80010-4

    Article  CAS  Google Scholar 

  41. Koh W-G, Pishko MV (2006) Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal Bioanal Chem 385:1389–1397. doi:10.1007/s00216-006-0571-6

    Article  CAS  PubMed  Google Scholar 

  42. Kovac JR, Voldman J (2007) Intuitive, image-based cell sorting using optofluidic cell sorting. Anal Chem 79:9321–9330. doi:10.1021/ac071366y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Latt SA, Stetten G, Juergens LA et al (1975) Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence. J Histochem Cytochem 23:493–505. doi:10.1177/23.7.1095650

    Article  CAS  PubMed  Google Scholar 

  44. Lee C-Y, Chang C-L, Wang Y-N, Fu L-M (2011) Microfluidic mixing: a review. Int J Mol Sci 12:3263–3287. doi:10.3390/ijms12053263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liao C-L, Lai K-C, Huang A-C et al (2012) Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/−9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol 50:1734–1740. doi:10.1016/j.fct.2012.02.033

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Lin T-Y, Lillehoj PB (2014) Smartphones for cell and biomolecular detection. Ann Biomed Eng 42:2205–2217. doi:10.1007/s10439-014-1055-z

    Article  PubMed  Google Scholar 

  47. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1:244–248. doi:10.1016/0925-4005(90)80209-I

    Article  CAS  Google Scholar 

  48. Manz A, Harrison DJ, Verpoorte EMJ et al (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. J Chromatogr A 593:253–258. doi:10.1016/0021-9673(92)80293-4

    Article  CAS  Google Scholar 

  49. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320. doi:10.1002/anie.200603817

    Article  CAS  Google Scholar 

  50. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105:19606–19611. doi:10.1073/pnas.0810903105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mohan R, Schudel BR, Desai AV et al (2011) Design considerations for elastomeric normally closed microfluidic valves. Sens Actuators B Chem 160:1216–1223. doi:10.1016/j.snb.2011.09.051

    Article  CAS  Google Scholar 

  52. Munce NR, Li J, Herman PR, Lilge L (2004) Microfabricated system for parallel single-cell capillary electrophoresis. Anal Chem 76:4983–4989. doi:10.1021/ac0496906

    Article  CAS  PubMed  Google Scholar 

  53. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. doi:10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  54. Nève N, Kohles SS, Winn SR, Tretheway DC (2010) Manipulation of suspended single cells by microfluidics and optical tweezers. Cell Mol Bioeng 3:213–228. doi:10.1007/s12195-010-0113-3

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nguyen TA, Yin T-I, Reyes D, Urban GA (2013) Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem 85:11068–11076. doi:10.1021/ac402761s

    Article  CAS  PubMed  Google Scholar 

  56. O’Neill AT, Monteiro-Riviere NA, Walker GM (2009) Microfabricated curtains for controlled cell seeding in high throughput microfluidic systems. Lab Chip 9:1756–1762. doi:10.1039/b819622b

    Article  PubMed  Google Scholar 

  57. Ong S-M, Zhang C, Toh Y-C et al (2008) A gel-free 3D microfluidic cell culture system. Biomaterials 29:3237–3244. doi:10.1016/j.biomaterials.2008.04.022

    Article  CAS  PubMed  Google Scholar 

  58. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467. doi:10.1126/science.1131370

    Article  CAS  PubMed  Google Scholar 

  59. Probst C, Grünberger A, Wiechert W, Kohlheyer D (2013) Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes. J Microbiol Methods 95:470–476. doi:10.1016/j.mimet.2013.09.002

    Article  PubMed  Google Scholar 

  60. Ramji R, Wang M, Bhagat AAS et al (2014) Single cell kinase signaling assay using pinched flow coupled droplet microfluidics. Biomicrofluidics 8:034104. doi:10.1063/1.4878635

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ravi M, Paramesh V, Kaviya SR et al (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230:16–26. doi:10.1002/jcp.24683

    Article  CAS  PubMed  Google Scholar 

  62. Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634. doi:10.1021/ac0505977

    Article  CAS  PubMed  Google Scholar 

  63. Rho HS, Yang Y, Hanke AT et al (2016) Programmable v-type valve for cell and particle manipulation in microfluidic devices. Lab Chip 16:305–311. doi:10.1039/C5LC01206F

    Article  CAS  PubMed  Google Scholar 

  64. Roelse M, de Ruijter NCA, Vrouwe EX, Jongsma MA (2013) A generic microfluidic biosensor of G protein-coupled receptor activation-monitoring cytoplasmic Ca2+ changes in human HEK293 cells. Biosens Bioelectron 47:436–444. doi:10.1016/j.bios.2013.03.065

    Article  CAS  PubMed  Google Scholar 

  65. Roman GT, Chen Y, Viberg P et al (2006) Single-cell manipulation and analysis using microfluidic devices. Anal Bioanal Chem 387:9–12. doi:10.1007/s00216-006-0670-4

    Article  Google Scholar 

  66. Ryley J, Pereira-Smith OM (2006) Microfluidics device for single cell gene expression analysis in Saccharomyces cerevisiae. Yeast 23:1065–1073. doi:10.1002/yea.1412

    Article  CAS  PubMed  Google Scholar 

  67. Seol Y-J, Kang H-W, Lee SJ et al (2014) Bioprinting technology and its applications. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg 46:342–348. doi:10.1093/ejcts/ezu148

    Article  Google Scholar 

  68. Shim J-H, Lee J-S, Kim JY, Cho D-W (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22:085014. doi:10.1088/0960-1317/22/8/085014

    Article  Google Scholar 

  69. Simon KA, Mosadegh B, Minn KT et al (2016) Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system. Biomaterials 95:47–59. doi:10.1016/j.biomaterials.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  70. Skardal A, Devarasetty M, Forsythe S et al (2016) A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. doi:10.1002/bit.25950

  71. Skardal A, Devarasetty M, Rodman C et al (2015a) Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann Biomed Eng 43:2361–2373. doi:10.1007/s10439-015-1298-3

    Article  PubMed  PubMed Central  Google Scholar 

  72. Skardal A, Devarasetty M, Soker S, Hall AR (2015b) In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device. Biofabrication 7:031001. doi:10.1088/1758-5090/7/3/031001

    Article  PubMed  Google Scholar 

  73. Song JW, Cavnar SP, Walker AC et al (2009) Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One. doi:10.1371/journal.pone.0005756

  74. Stjernstrom M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8:33–38. doi:10.1088/0960-1317/8/1/006

    Article  CAS  Google Scholar 

  75. Tabriz AG, Hermida MA, Leslie NR, Shu W (2015) Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 7:045012. doi:10.1088/1758-5090/7/4/045012

    Article  PubMed  Google Scholar 

  76. Tan W-H, Takeuchi S (2007) A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A 104:1146–1151. doi:10.1073/pnas.0606625104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Toley BJ, Wang JA, Gupta M et al (2015) A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 15:1432–1444. doi:10.1039/C4LC01155D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tung Y-C, Hsiao AY, Allen SG et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136:473–478. doi:10.1039/C0AN00609B

    Article  CAS  PubMed  Google Scholar 

  79. Unger MA, Chou HP, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116. doi:10.1126/science.288.5463.113

    Article  CAS  PubMed  Google Scholar 

  80. Wang Z, Kim M-C, Marquez M, Thorsen T (2007) High-density microfluidic arrays for cell cytotoxicity analysis. Lab Chip 7:740–745. doi:10.1039/b618734j

    Article  CAS  PubMed  Google Scholar 

  81. Werner M, Merenda F, Piguet J et al (2011) Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells. Lab Chip 11:2432–2439. doi:10.1039/c1lc20181f

    Article  CAS  PubMed  Google Scholar 

  82. Wheeler AR, Throndset WR, Whelan RJ et al (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581–3586

    Article  CAS  PubMed  Google Scholar 

  83. Wu L, Chen P, Dong Y et al (2013) Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed Microdevices 15:553–560. doi:10.1007/s10544-013-9754-z

    Article  CAS  PubMed  Google Scholar 

  84. Xu J, Wu L, Huang M et al (2001) Dielectrophoretic separation and transportation of cells and bioparticles on microfabriacted chips. In: Ramsey JM, van den Berg A (eds) Micro total analysis systems. Springer, Netherlands, pp 565–566

    Google Scholar 

  85. Zhang C, Jang S, Amadi OC, et al (2013) A sensitive chemotaxis assay using a novel microfluidic device. BioMed Res Int. doi: http://dx.doi.org/10.1155/2013/373569

    Google Scholar 

  86. Zhang C, Xu J, Ma W, Zheng W (2006) PCR microfluidic devices for DNA amplification. Biotechnol Adv 24:243–284. doi:10.1016/j.biotechadv.2005.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam R. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rajan, S.A.P., Hambright, P., Burke, R.C., Hall, A.R. (2018). Microfluidics in Cell and Tissue Studies. In: Soker, S., Skardal, A. (eds) Tumor Organoids. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60511-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60511-1_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60509-8

  • Online ISBN: 978-3-319-60511-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics