Skip to main content

Building Better Tumor Models: Organoid Systems to Investigate Angiogenesis

  • Chapter
  • First Online:
Tumor Organoids

Abstract

Cancer remains a leading cause of death in the United States and other developed countries. In nearly all cases, the cause of death is related to complications associated with tumor metastasis to distant sites such as the brain, lung, liver, and bone. A central feature of tumor progression is the acquisition of a blood supply, which provides nutrients for the growing tumor as well as conduits for transport of cancer cells. Our understanding of how a tumor acquires and manipulates a blood supply has been gleaned largely from animal models, but more recent advances in tissue engineering and microfabrication have led to clever 3D in vitro models of tumors that include blood vessels. This chapter will first briefly review the process of blood vessel growth including our knowledge of blood vessels within the cancer microenvironment, and discuss the most recent advances to mimic blood vessel growth in the tumor microenvironment using 3D in vitro culture methods. Finally, we discuss several important factors that control blood vessel growth including hypoxia, cellular metabolism, and tissue mechanics, which provide rich opportunities for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. doi:10.1038/35025220

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  4. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4):207–214. doi:10.1016/j.tips.2012.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8. doi:10.1056/NEJM199101033240101

    Article  CAS  PubMed  Google Scholar 

  6. Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2(2):247–250. doi:10.1038/nprot.2007.25

    Article  CAS  PubMed  Google Scholar 

  7. Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 1(2–3):78–82. doi:10.1242/dmm.000976

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dalen H, Burki HJ (1971) Some observations on the three-dimensional growth of L5178Y cell colonies in soft agar culture. Exp Cell Res 65(2):433–438

    Article  CAS  PubMed  Google Scholar 

  9. Ehsan SM, Welch-Reardon KM, Waterman ML, Hughes CCW, George SC (2014) A three-dimensional in vitro model of tumor cell intravasation. Integr Biol (UK) 6(6):603–610. doi:10.1039/c3ib40170g

    Article  CAS  Google Scholar 

  10. Carver K, Ming X, Juliano RL (2014) Multicellular tumor spheroids as a model for assessing delivery of oligonucleotides in three dimensions. Mol Ther Nucl Acids 3. doi:ARTN e153 10.1038/mtna.2014.5

  11. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK, Bouma BE (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–U1151. doi:10.1038/nm.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410. doi:10.1038/nrc1093

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez-Sanchez ME, Barbier S, Whitehead J, Bealle G, Michel A, Latorre-Ossa H, Rey C, Fouassier L, Claperon A, Brulle L, Girard E, Servant N, Rio-Frio T, Marie H, Lesieur S, Housset C, Gennisson JL, Tanter M, Menager C, Fre S, Robine S, Farge E (2015) Mechanical induction of the tumorigenic beta-catenin pathway by tumour growth pressure. Nature 523(7558):92–95. doi:10.1038/nature14329

    Article  CAS  PubMed  Google Scholar 

  14. Ou G, Weaver VM (2015) Tumor-induced solid stress activates beta-catenin signaling to drive malignant behavior in normal, tumor-adjacent cells. BioEssays 37(12):1293–1297. doi:10.1002/bies.201500090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177. doi:10.1038/nrm2639

    Article  CAS  PubMed  Google Scholar 

  16. Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A, Winderlich M, Nottebaum A, Vestweber D, Deutsch U, Koh GY, Olsen BR, Alitalo K (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 10(5):527–537. doi:10.1038/ncb1715

    Article  CAS  PubMed  Google Scholar 

  17. Cascone T, Heymach JV (2012) Targeting the angiopoietin/Tie2 pathway: cutting tumor vessels with a double-edged sword? J Clin Oncol (Official Journal of the American Society of Clinical Oncology) 30(4):441–444. doi:10.1200/jco.2011.38.7621

    Article  CAS  Google Scholar 

  18. Radu M, Semenova G, Kosoff R, Chernoff J (2014) PAK signalling during the development and progression of cancer. Nat Rev Cancer 14(1):13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fryer BH, Field J (2005) Rho, Rac, Pak and angiogenesis: old roles and newly identified responsibilities in endothelial cells. Cancer Lett 229(1):13–23. doi:http://dx.doi.org/10.1016/j.canlet.2004.12.009

  20. Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE (2008) Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A 105(32):11305–11310. doi:10.1073/pnas.0800835105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13(9):591–600

    Article  CAS  PubMed  Google Scholar 

  22. Dupont S (2016) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res. doi:http://dx.doi.org/10.1016/j.yexcr.2015.10.034

  23. Piccolo S, Cordenonsi M, Dupont S (2013) Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res (An Official Journal of the American Association for Cancer Research) 19(18):4925–4930. doi:10.1158/1078-0432.ccr-12-3172

    Article  CAS  Google Scholar 

  24. Nakatsu MN, Hughes CCW (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Angiogenesis: in vitro systems. Methods Enzymol 443:65. doi:10.1016/S0076-6879(08)02004-1

    Article  CAS  PubMed  Google Scholar 

  25. Welch-Reardon KM, Ehsan SM, Wang KH, Wu N, Newman AC, Romero-Lopez M, Fong AH, George SC, Edwards RA, Hughes CCW (2014) Angiogenic sprouting is regulated by endothelial cell expression of Slug. J Cell Sci 127(9):2017–2028. doi:10.1242/jcs.143420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim J, Chung M, Kim S, Jo DH, Kim JH, Jeon NL (2015) Engineering of a biomimetic pericyte-covered 3D microvascular network. PLoS One 10(7):e0133880. doi:10.1371/journal.pone.0133880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-Teschl C, Lopez JA, Stroock AD (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 109(24):9342–9347. doi:10.1073/pnas.1201240109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD (2014) Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol-Uk 6(5):555–563. doi:10.1039/c3ib40267c

    Article  CAS  Google Scholar 

  29. Moya ML, Hsu YH, Lee AP, Hughes CC, George SC (2013) In vitro perfused human capillary networks. Tissue Eng Part C Methods 19(9):730–737. doi:10.1089/ten.TEC.2012.0430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci U S A 108(37):15342–15347. doi:10.1073/pnas.1105316108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen DH, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, Chen CS (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A 110(17):6712–6717. doi:10.1073/pnas.1221526110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bischel LL, Young EW, Mader BR, Beebe DJ (2013) Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34(5):1471–1477. doi:10.1016/j.biomaterials.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  33. Newman AC, Chou W, Welch-Reardon KM, Fong AH, Popson SA, Phan DT, Sandoval DR, Nguyen DP, Gershon PD, Hughes CC (2013) Analysis of stromal cell secretomes reveals a critical role for stromal cell-derived hepatocyte growth factor and fibronectin in angiogenesis. Arterioscler Thromb Vasc Biol 33(3):513–522. doi:10.1161/ATVBAHA.112.300782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell 22(20):3791–3800. doi:10.1091/mbc.E11-05-0393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang XL, Phan DTT, Sobrino A, George SC, Hughes CCW, Lee AP (2016) Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16(2):282–290. doi:10.1039/c5lc01050k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CC, George SC (2009) Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A 15(6):1363–1371. doi:10.1089/ten.tea.2008.0314

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Aledia AS, Popson SA, Him L, Hughes CC, George SC (2010) Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng Part A 16(2):585–594. doi:10.1089/ten.TEA.2009.0491

    Article  CAS  PubMed  Google Scholar 

  38. Alonzo LF, Moya ML, Shirure VS, George SC (2015) Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication. Lab Chip 15(17):3521–3529. doi:10.1039/c5lc00507h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14(6):430–439. doi:10.1038/nrc3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47. doi:10.1038/nrc704

    Article  CAS  PubMed  Google Scholar 

  41. Vaupel P, Mayer A, Hockel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354. doi:10.1016/S0076-6879(04)81023-1

    Article  CAS  PubMed  Google Scholar 

  42. Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, White EL, Davis AC, Ihle JN, Cleveland JL (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16(19):2530–2543. doi:10.1101/gad.1024602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grimes DR, Kelly C, Bloch K, Partridge M (2014) A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J R Soc Interface 11(92):20131124. doi:10.1098/rsif.2013.1124

    Article  PubMed  PubMed Central  Google Scholar 

  44. Adams JM, Difazio LT, Rolandelli RH, Lujan JJ, Hasko G, Csoka B, Selmeczy Z, Nemeth ZH (2009) HIF-1: a key mediator in hypoxia. Acta Physiol Hung 96(1):19–28. doi:10.1556/APhysiol.96.2009.1.2

    Article  CAS  PubMed  Google Scholar 

  45. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Science’s STKE: signal transduction knowledge environment 2007 (407):cm8. doi:10.1126/stke.4072007cm8

  46. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70(5):1469–1480. doi:10.1124/mol.106.027029

    Article  CAS  PubMed  Google Scholar 

  47. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660. doi:10.1038/nm0603-653

    Article  CAS  PubMed  Google Scholar 

  48. Zhou W, Dosey TL, Biechele T, Moon RT, Horwitz MS, Ruohola-Baker H (2011) Assessment of hypoxia inducible factor levels in cancer cell lines upon hypoxic induction using a novel reporter construct. PLoS One 6(11):e27460. doi:10.1371/journal.pone.0027460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133. doi:10.1177/1947601911423654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Byrne MB, Leslie MT, Gaskins HR, Kenis PJ (2014) Methods to study the tumor microenvironment under controlled oxygen conditions. Trends Biotechnol 32(11):556–563. doi:10.1016/j.tibtech.2014.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Piret JP, Mottet D, Raes M, Michiels C (2002) CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann N Y Acad Sci 973:443–447

    Article  CAS  PubMed  Google Scholar 

  52. Brennan MD, Rexius-Hall ML, Elgass LJ, Eddington DT (2014) Oxygen control with microfluidics. Lab Chip 14(22):4305–4318. doi:10.1039/c4lc00853g

    Article  CAS  PubMed  Google Scholar 

  53. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD (2012) A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab Chip 12(22):4855–4863. doi:10.1039/c2lc40306d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang L, Liu W, Wang Y, Wang JC, Tu Q, Liu R, Wang J (2013) Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment. Lab Chip 13(4):695–705. doi:10.1039/c2lc40661f

    Article  CAS  PubMed  Google Scholar 

  55. Ochs CJ, Kasuya J, Pavesi A, Kamm RD (2014) Oxygen levels in thermoplastic microfluidic devices during cell culture. Lab Chip 14(3):459–462. doi:10.1039/c3lc51160j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  PubMed  Google Scholar 

  57. Esipova TV, Karagodov A, Miller J, Wilson DF, Busch TM, Vinogradov SA (2011) Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging. Anal Chem 83(22):8756–8765. doi:10.1021/ac2022234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Griffith CK, Miller C, Sainson RC, Calvert JW, Jeon NL, Hughes CC, George SC (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11(1–2):257–266. doi:10.1089/ten.2005.11.257

    Article  CAS  PubMed  Google Scholar 

  59. De Bock K, Georgiadou M, Carmeliet P (2013) Role of endothelial cell metabolism in vessel sprouting. Cell Metab 18(5):634–647. doi:10.1016/j.cmet.2013.08.001

    Article  PubMed  CAS  Google Scholar 

  60. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663. doi:10.1016/j.cell.2013.06.037

    Article  PubMed  CAS  Google Scholar 

  61. Verdegem D, Moens S, Stapor P, Carmeliet P (2014) Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab 2:19. doi:10.1186/2049-3002-2-19

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wenzel C, Riefke B, Grundemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Rase S, Ansari N, Esner M, Bickle M, Pampaloni F, Mattheyer C, Stelzer EH, Parczyk K, Prechtl S, Steigemann P (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323(1):131–143. doi:10.1016/j.yexcr.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  63. Wright BK, Andrews LM, Jones MR, Stringari C, Digman MA, Gratton E (2012) Phasor-FLIM analysis of NADH distribution and localization in the nucleus of live progenitor myoblast cells. Microsc Res Tech 75(12):1717–1722. doi:10.1002/jemt.22121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wright BK, Andrews LM, Markham J, Jones MR, Stringari C, Digman MA, Gratton E (2012) NADH distribution in live progenitor stem cells by phasor-fluorescence lifetime image microscopy. Biophys J 103(1):L7–L9. doi:10.1016/j.bpj.2012.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walsh AJ, Cook RS, Sanders ME, Aurisicchio L, Ciliberto G, Arteaga CL, Skala MC (2014) Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res 74(18):5184–5194. doi:10.1158/0008-5472.CAN-14-0663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walsh AJ, Castellanos JA, Nagathihalli NS, Merchant NB, Skala MC (2015) Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response. Pancreas. doi:10.1097/MPA.0000000000000543

  67. Okkelman IA, Dmitriev RI, Foley T, Papkovsky DB (2016) Use of Fluorescence Lifetime Imaging Microscopy (FLIM) as a timer of cell cycle S phase. PLoS One 11(12):e0167385. doi:10.1371/journal.pone.0167385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, Duchen MR (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:3936. doi:10.1038/ncomms4936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 108(33):13582–13587. doi:10.1073/pnas.1108161108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jungmann JH, Heeren RM (2012) Emerging technologies in mass spectrometry imaging. J Proteome 75(16):5077–5092. doi:10.1016/j.jprot.2012.03.022

    Article  CAS  Google Scholar 

  71. Feist PE, Sidoli S, Liu X, Schroll MM, Rahmy S, Fujiwara R, Garcia BA, Hummon AB (2017) Multicellular tumor spheroids combined with mass spectrometric histone analysis to evaluate epigenetic drugs. Anal Chem 89(5):2773–2781. doi:10.1021/acs.analchem.6b03602

    Article  CAS  PubMed  Google Scholar 

  72. Giordano S, Morosi L, Veglianese P, Licandro SA, Frapolli R, Zucchetti M, Cappelletti G, Falciola L, Pifferi V, Visentin S, D'Incalci M, Davoli E (2016) 3D mass spectrometry imaging reveals a very heterogeneous drug distribution in tumors. Sci Rep 6:37027. doi:10.1038/srep37027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiang L, Chughtai K, Purvine SO, Bhujwalla ZM, Raman V, Pasa-Tolic L, Heeren RM, Glunde K (2015) MALDI-mass spectrometric imaging revealing hypoxia-driven lipids and proteins in a breast tumor model. Anal Chem 87(12):5947–5956. doi:10.1021/ac504503x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293. doi:10.1038/nrc2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shieh AC, Swartz MA (2011) Regulation of tumor invasion by interstitial fluid flow. Phys Biol 8(1):015012. doi:10.1088/1478-3975/8/1/015012

    Article  PubMed  Google Scholar 

  77. Jean C, Gravelle P, Fournie JJ, Laurent G (2011) Influence of stress on extracellular matrix and integrin biology. Oncogene 30(24):2697–2706. doi:10.1038/onc.2011.27

    Article  CAS  PubMed  Google Scholar 

  78. Csikasz-Nagy A, Escudero LM, Guillaud M, Sedwards S, Baum B, Cavaliere M (2013) Cooperation and competition in the dynamics of tissue architecture during homeostasis and tumorigenesis. Semin Cancer Biol 23(4):293–298. doi:10.1016/j.semcancer.2013.05.009

    Article  PubMed  Google Scholar 

  79. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122. doi:10.1038/nrc2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12(5):308–319. doi:10.1038/nrm3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fu BM, Tarbell JM (2013) Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip Rev Syst Biol Med 5(3):381–390. doi:10.1002/wsbm.1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sund M, Xie L, Kalluri R (2004) The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis. APMIS 112(7–8):450–462. doi:10.1111/j.1600-0463.2004.t01-1-apm11207-0806.x

    Article  CAS  PubMed  Google Scholar 

  83. Shen Y, Hou Y, Yao S, Huang P, Yobas L (2015) In vitro epithelial organoid generation induced by substrate nanotopography. Sci Rep 5:9293. doi:10.1038/srep09293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bignon M, Pichol-Thievend C, Hardouin J, Malbouyres M, Brechot N, Nasciutti L, Barret A, Teillon J, Guillon E, Etienne E, Caron M, Joubert-Caron R, Monnot C, Ruggiero F, Muller L, Germain S (2011) Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood 118(14):3979–3989. doi:10.1182/blood-2010-10-313296

    Article  CAS  PubMed  Google Scholar 

  85. Yamamura N, Sudo R, Ikeda M, Tanishita K (2007) Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 13(7):1443–1453. doi:10.1089/ten.2006.0333

    Article  CAS  PubMed  Google Scholar 

  86. Asparuhova MB, Secondini C, Ruegg C, Chiquet-Ehrismann R (2015) Mechanism of irradiation-induced mammary cancer metastasis: a role for SAP-dependent Mkl1 signaling. Mol Oncol 9(8):1510–1527. doi:10.1016/j.molonc.2015.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. doi:10.1016/j.cell.2009.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. doi:10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu H, Mouw JK, Weaver VM (2011) Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol 21(1):47–56. doi:10.1016/j.tcb.2010.08.015

    Article  PubMed  Google Scholar 

  90. Matsumoto T, Yung YC, Fischbach C, Kong HJ, Nakaoka R, Mooney DJ (2007) Mechanical strain regulates endothelial cell patterning in vitro. Tissue Eng 13(1):207–217. doi:10.1089/ten.2006.0058

    Article  CAS  PubMed  Google Scholar 

  91. Hanna M, Liu H, Amir J, Sun Y, Morris SW, Siddiqui MA, Lau LF, Chaqour B (2009) Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 284(34):23125–23136. doi:10.1074/jbc.M109.019059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gjorevski N, Piotrowski AS, Varner VD, Nelson CM (2015) Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci Rep 5:11458. doi:10.1038/srep11458

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mierke CT, Rosel D, Fabry B, Brabek J (2008) Contractile forces in tumor cell migration. Eur J Cell Biol 87(8–9):669–676. doi:10.1016/j.ejcb.2008.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Augsten M (2014) Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4:62. doi:10.3389/fonc.2014.00062

    Article  PubMed  PubMed Central  Google Scholar 

  95. Stanisavljevic J, Loubat-Casanovas J, Herrera M, Luque T, Pena R, Lluch A, Albanell J, Bonilla F, Rovira A, Pena C, Navajas D, Rojo F, Garcia de Herreros A, Baulida J (2015) Snail1-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis. Cancer Res 75(2):284–295. doi:10.1158/0008-5472.CAN-14-1903

    Article  CAS  PubMed  Google Scholar 

  96. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G, Sahai E (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646. doi:10.1038/ncb2756

    Article  CAS  PubMed  Google Scholar 

  97. Goetz JG, Minguet S, Navarro-Lerida I, Lazcano JJ, Samaniego R, Calvo E, Tello M, Osteso-Ibanez T, Pellinen T, Echarri A, Cerezo A, Klein-Szanto AJ, Garcia R, Keely PJ, Sanchez-Mateos P, Cukierman E, Del Pozo MA (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146(1):148–163. doi:10.1016/j.cell.2011.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17(2):135–147. doi:10.1016/j.ccr.2009.12.041

    Article  CAS  PubMed  Google Scholar 

  99. Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP (2012) Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res (MCR) 10(11):1403–1418. doi:10.1158/1541-7786.MCR-12-0307

    Article  CAS  Google Scholar 

  100. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780. doi:10.1038/Nature05571

  101. Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H, Polverini PJ, Nor J, Kitajewski J, Wang CY (2005) Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8(1):13–23. doi:10.1016/j.ccr.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  102. Gjorevski N, Boghaert E, Nelson CM (2012) Regulation of epithelial-mesenchymal transition by transmission of mechanical stress through epithelial tissues. Cancer Microenviron (Official Journal of the International Cancer Microenvironment Society) 5(1):29–38. doi:10.1007/s12307-011-0076-5

    Article  Google Scholar 

  103. Gomez EW, Chen QK, Gjorevski N, Nelson CM (2010) Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J Cell Biochem 110(1):44–51. doi:10.1002/jcb.22545

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sewell-Loftin MK, Delaughter DM, Peacock JR, Brown CB, Baldwin HS, Barnett JV, Merryman WD (2014) Myocardial contraction and hyaluronic acid mechanotransduction in epithelial-to-mesenchymal transformation of endocardial cells. Biomaterials. doi:S0142–9612(13)01535–4 [pii] 10.1016/j.biomaterials.2013.12.051

  105. Chien S (2008) Role of shear stress direction in endothelial mechanotransduction. Mol Cell Biomech (MCB) 5(1):1–8

    Google Scholar 

  106. Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38(10):1949–1971. doi:10.1016/j.jbiomech.2004.09.030

    Article  PubMed  Google Scholar 

  107. Galie PA, Nguyen DH, Choi CK, Cohen DM, Janmey PA, Chen CS (2014) Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci U S A 111(22):7968–7973. doi:10.1073/pnas.1310842111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vickerman V, Kamm RD (2012) Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Integr Biol-Uk 4(8):863–874. doi:10.1039/c2ib00184e

    Article  CAS  Google Scholar 

  109. Buchanan CF, Verbridge SS, Vlachos PP, Rylander MN (2014) Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model. Cell Adhes Migr 8(5):517–524. doi:10.4161/19336918.2014.970001

    Article  Google Scholar 

  110. Buchanan CF, Voigt EE, Szot CS, Freeman JW, Vlachos PP, Rylander MN (2014) Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng Part C Methods 20(1):64–75. doi:10.1089/ten.TEC.2012.0731

    Article  CAS  PubMed  Google Scholar 

  111. Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97(2–3):163–179. doi:S0079-6107(08)00015-1 [pii] 10.1016/j.pbiomolbio.2008.02.005

  112. Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259(4):381–392. doi:10.1111/j.1365-2796.2006.01624.x

    Article  CAS  PubMed  Google Scholar 

  113. Ngu H, Feng Y, Lu L, Oswald SJ, Longmore GD, Yin FC (2010) Effect of focal adhesion proteins on endothelial cell adhesion, motility and orientation response to cyclic strain. Ann Biomed Eng 38(1):208–222. doi:10.1007/s10439-009-9826-7

    Article  PubMed  Google Scholar 

  114. Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8(8):604–617. doi:10.1038/Nrc2353

  115. Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A 100(13):7988–7995. doi:10.1073/pnas.1332808100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454(3):345–359. doi:10.1007/s00424-007-0212-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pelham RJ Jr, Wang YL (1998) Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull 194(3):348–349. discussion 349–350

    Article  CAS  PubMed  Google Scholar 

  118. Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94(25):13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dong Y, Xie X, Wang Z, Hu C, Zheng Q, Wang Y, Chen R, Xue T, Chen J, Gao D, Wu W, Ren Z, Cui J (2014) Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin beta1. Biochem Biophys Res Commun 444(3):427–432. doi:10.1016/j.bbrc.2014.01.079

    Article  CAS  PubMed  Google Scholar 

  120. Kojima T, Moraes C, Cavnar SP, Luker GD, Takayama S (2015) Surface-templated hydrogel patterns prompt matrix-dependent migration of breast cancer cells towards chemokine-secreting cells. Acta Biomater 13:68–77. doi:10.1016/j.actbio.2014.11.033

    Article  CAS  PubMed  Google Scholar 

  121. Fraley SI, Feng Y, Krishnamurthy R, Kim DH, Celedon A, Longmore GD, Wirtz D (2010) A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat Cell Biol 12(6):598–604. doi:10.1038/ncb2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zebda N, Dubrovskyi O, Birukov KG (2012) Focal adhesion kinase regulation of mechanotransduction and its impact on endothelial cell functions. Microvasc Res 83(1):71–81. doi:10.1016/j.mvr.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  123. Kim DH, Khatau SB, Feng Y, Walcott S, Sun SX, Longmore GD, Wirtz D (2012) Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci Rep 2:555. doi:10.1038/srep00555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Nagelkerke A, Bussink J, Sweep FC, Span PN (2013) Generation of multicellular tumor spheroids of breast cancer cells: how to go three-dimensional. Anal Biochem 437(1):17–19. doi:10.1016/j.ab.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  125. Timmins NE, Nielsen LK (2007) Generation of multicellular tumor spheroids by the hanging-drop method. Methods Mol Med 140:141–151

    Article  CAS  PubMed  Google Scholar 

  126. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S (2015) Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann Biomed Eng 43(10):2361–2373. doi:10.1007/s10439-015-1298-3

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fong EL, Wan X, Yang J, Morgado M, Mikos AG, Harrington DA, Navone NM, Farach-Carson MC (2015) A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials 77:164–172. doi:10.1016/j.biomaterials.2015.10.059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bates RC, Buret A, van Helden DF, Horton MA, Burns GF (1994) Apoptosis induced by inhibition of intercellular contact. J Cell Biol 125(2):403–415

    Article  CAS  PubMed  Google Scholar 

  129. Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, Matsuzaki T, Yamazaki T, Toyohara T, Osafune K, Nakauchi H, Yoshikawa HY, Taniguchi H (2015) Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16(5):556–565. doi:10.1016/j.stem.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  130. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N, Aoyama S, Adachi Y, Taniguchi H (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484. doi:10.1038/nature12271

    Article  CAS  PubMed  Google Scholar 

  131. Takebe T, Zhang RR, Koike H, Kimura M, Yoshizawa E, Enomura M, Koike N, Sekine K, Taniguchi H (2014) Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc 9(2):396–409. doi:10.1038/nprot.2014.020

    Article  CAS  PubMed  Google Scholar 

  132. Verbridge SS, Choi NW, Zheng Y, Brooks DJ, Stroock AD, Fischbach C (2010) Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. Tissue Eng Part A 16(7):2133–2141. doi:10.1089/ten.TEA.2009.0670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kilarski WW, Samolov B, Petersson L, Kvanta A, Gerwins P (2009) Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15(6):657–U145. doi:10.1038/Nm.1985

  134. Liang Y, Jeong J, DeVolder RJ, Cha C, Wang F, Tong YW, Kong H (2011) A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials 32(35):9308–9315. doi:10.1016/j.biomaterials.2011.08.045

    Article  CAS  PubMed  Google Scholar 

  135. Hsu YH, Moya ML, Abiri P, Hughes CC, George SC, Lee AP (2013) Full range physiological mass transport control in 3D tissue cultures. Lab Chip 13(1):81–89. doi:10.1039/c2lc40787f

    Article  CAS  PubMed  Google Scholar 

  136. Hsu YH, Moya ML, Hughes CC, George SC, Lee AP (2013) A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13(15):2990–2998. doi:10.1039/c3lc50424g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Moya ML, Alonzo LF, George SC (2014) Microfluidic device to culture 3D in vitro human capillary networks. Methods Mol Biol 1202:21–27. doi:10.1007/7651_2013_36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2):269–275. doi:10.1039/B807585a

  139. Park YK, Tu TY, Lim SH, Clement IJM, Yang SY, Kamm RD (2014) In vitro microvessel growth and remodeling within a three-dimensional microfluidic environment. Cell Mol Bioeng 7(1):15–25. doi:10.1007/s12195-013-0315-6

  140. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD (2009) Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J 23(7):2155–2164. doi:10.1096/fj.08-122820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22(4):201–207. doi:10.1016/S0165-6147(00)01676-X

  142. Lee H, Kim S, Chung M, Kim JH, Jeon NL (2014) A bioengineered array of 3D microvessels for vascular permeability assay. Microvasc Res 91:90–98. doi:10.1016/j.mvr.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  143. Alizadeh AM, Shiri S, Farsinejad S (2014) Metastasis review: from bench to bedside. Tumour Biol (The Journal of the International Society for Oncodevelopmental Biology and Medicine) 35(9):8483–8523. doi:10.1007/s13277-014-2421-z

    Article  Google Scholar 

  144. Blazejczyk A, Papiernik D, Porshneva K, Sadowska J, Wietrzyk J (2015) Endothelium and cancer metastasis: perspectives for antimetastatic therapy. Pharmacol Rep (PR) 67(4):711–718. doi:10.1016/j.pharep.2015.05.014

    Article  CAS  Google Scholar 

  145. Chang J, Erler J (2014) Hypoxia-mediated metastasis. Adv Exp Med Biol 772:55–81. doi:10.1007/978-1-4614-5915-6_3

    Article  CAS  PubMed  Google Scholar 

  146. Irmisch A, Huelsken J (2013) Metastasis: new insights into organ-specific extravasation and metastatic niches. Exp Cell Res 319(11):1604–1610. doi:10.1016/j.yexcr.2013.02.012

    Article  CAS  PubMed  Google Scholar 

  147. Garcia-Roman J, Zentella-Dehesa A (2013) Vascular permeability changes involved in tumor metastasis. Cancer Lett 335(2):259–269. doi:10.1016/j.canlet.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  148. Miles FL, Pruitt FL, van Golen KL, Cooper CR (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25(4):305–324. doi:10.1007/s10585-007-9098-2

    Article  CAS  PubMed  Google Scholar 

  149. Reymond N, d’Agua BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13(12):858–870. doi:10.1038/nrc3628

    Article  CAS  PubMed  Google Scholar 

  150. van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728(1–2):23–34. doi:10.1016/j.mrrev.2011.05.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Bersini S, Jeon JS, Moretti M, Kamm RD (2014) In vitro models of the metastatic cascade: from local invasion to extravasation. Drug Discov Today 19(6):735–742. doi:10.1016/j.drudis.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  152. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. doi:10.1038/nature04186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DYR, Chen EI, Lyden D, Bissell MJ (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817. doi:10.1038/ncb2767. http://www.nature.com/ncb/journal/v15/n7/abs/ncb2767.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lee H, Park W, Ryu H, Jeon NL (2014) A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation. Biomicrofluidics 8(5):054102. doi:10.1063/1.4894595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109(34):13515–13520. doi:10.1073/pnas.1210182109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104(2):397–401. doi:10.1182/blood-2004-02-0434

    Article  CAS  PubMed  Google Scholar 

  157. Coupland LA, Chong BH, Parish CR (2012) Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res 72(18):4662–4671. doi:10.1158/0008-5472.CAN-11-4010

    Article  CAS  PubMed  Google Scholar 

  158. Reymond N, Im JH, Garg R, Vega FM, Borda d'Agua B, Riou P, Cox S, Valderrama F, Muschel RJ, Ridley AJ (2012) Cdc42 promotes transendothelial migration of cancer cells through beta1 integrin. J Cell Biol 199(4):653–668. doi:10.1083/jcb.201205169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shirure VS, Liu T, Delgadillo LF, Cuckler CM, Tees DF, Benencia F, Goetz DJ, Burdick MM (2015) CD44 variant isoforms expressed by breast cancer cells are functional E-selectin ligands under flow conditions. Am J Physiol Cell Physiol 308(1):C68–C78. doi:10.1152/ajpcell.00094.2014

    Article  CAS  PubMed  Google Scholar 

  160. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL (2013) In vitro model of tumor cell extravasation. PLoS One 8(2):e56910. doi:10.1371/journal.pone.0056910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Heyder C, Gloria-Maercker E, Entschladen F, Hatzmann W, Niggemann B, Zanker KS, Dittmar T (2002) Realtime visualization of tumor cell/endothelial cell interactions during transmigration across the endothelial barrier. J Cancer Res Clin Oncol 128(10):533–538. doi:10.1007/s00432-002-0377-7

    Article  CAS  PubMed  Google Scholar 

  162. Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding BS, Schachterle W, Liu Y, Rosenwaks Z, Butler JM, Xiang J, Rafii A, Shido K, Rabbany SY, Elemento O, Rafii S (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26(2):204–219. doi:10.1016/j.devcel.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  163. Moya ML, George SC (2014) Integrating organ-specific function with the microcirculation. Curr Opin Chem Eng 3:103–111. doi:10.1016/j.coche.2013.12.004

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shirure, V.S., Sewell-Loftin, M.K., Lam, S.F., Todd, T.D., Hwang, P.Y., George, S.C. (2018). Building Better Tumor Models: Organoid Systems to Investigate Angiogenesis. In: Soker, S., Skardal, A. (eds) Tumor Organoids. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60511-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60511-1_7

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60509-8

  • Online ISBN: 978-3-319-60511-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics