Skip to main content

Mammary Gland Organoids

  • Chapter
  • First Online:
Tumor Organoids

Abstract

The study of the mechanisms that regulate development and tumorigenesis is a complex undertaking that requires a variety of model systems to test hypothesis that embrace all levels of organization: from single cells to organs. In the mammary gland field, the use of three-dimensional culture systems has provided a platform to study, in a physiologically relevant setting, cell biology in context. In the late 50’s methods to isolate primary mammary organoids were established and since then they have been increasingly used to understand cell behavior. In this chapter we embrace, in a historical perspective, the key findings carried out using primary mammary organoids considering that the broadening of our knowledge will, in the future, rely increasingly on this kind of tridimensional culture setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nandi S (1958) Endocrine control of mammary gland development and function in C3H/Crgl mouse. J Natl Cancer Inst 21:1039–1063

    CAS  PubMed  Google Scholar 

  2. Williams JM, Daniel CW (1983) Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol 97(2):274–290

    Article  CAS  PubMed  Google Scholar 

  3. Balinsky B (1950) On the prenatal growth of the mammary gland rudiment in the mouse. J Anat 84(Pt 3):227

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cunha GR (1994) Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 74(3 Suppl):1030–1044

    Article  CAS  PubMed  Google Scholar 

  5. Cowin P, Wysolmerski J (2010) Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol 2(6):a003251. doi:cshperspect.a003251 [pii] 1101/cshperspect.a003251

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hogg NA, Harrison CJ, Tickle C (1983) Lumen formation in the developing mouse mammary gland. J Embryol Exp Morphol 73:39–57

    CAS  PubMed  Google Scholar 

  7. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111(1):29–40

    Article  CAS  PubMed  Google Scholar 

  8. Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14(4):570–581. doi:10.1016/j.devcel.2008.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hens JR, Dann P, Zhang JP, Harris S, Robinson GW, Wysolmerski J (2007) BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development 134(6):1221–1230. doi:10.1242/dev.000182

    Article  CAS  PubMed  Google Scholar 

  10. Daniel CW, Silberstein GB, Strickland P (1987) Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 47(22):6052–6057

    CAS  PubMed  Google Scholar 

  11. Ormerod EJ, Rudland PS (1984) Cellular composition and organization of ductal buds in developing rat mammary glands: evidence for morphological intermediates between epithelial and myoepithelial cells. Am J Anat 170(4):631–652. doi:10.1002/aja.1001700408

    Article  CAS  PubMed  Google Scholar 

  12. Brisken C, Ataca D (2015) Endocrine hormones and local signals during the development of the mouse mammary gland. Wiley Interdiscip Rev Dev Biol 4(3):181–195. doi:10.1002/wdev.172

    Article  CAS  PubMed  Google Scholar 

  13. Ruan W, Kleinberg DL (1999) Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140(11):5075–5081. doi:10.1210/endo.140.11.7095

    Article  CAS  PubMed  Google Scholar 

  14. Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A 103(7):2196–2201. doi:10.1073/pnas.0510974103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, Lee DC (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126(12):2739–2750

    CAS  PubMed  Google Scholar 

  16. Lu P, Ewald AJ, Martin GR, Werb Z (2008) Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol 321(1):77–87. doi:10.1016/j.ydbio.2008.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coleman-Krnacik S, Rosen JM (1994) Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol Endocrinol 8(2):218–229

    CAS  PubMed  Google Scholar 

  18. Mueller SO, Clark JA, Myers PH, Korach KS (2002) Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology 143(6):2357–2365

    Article  CAS  PubMed  Google Scholar 

  19. Shyamala G, Yang X, Cardiff RD, Dale E (2000) Impact of progesterone receptor on cell-fate decisions during mammary gland development. Proc Natl Acad Sci U S A 97(7):3044–3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Djonov V, Andres AC, Ziemiecki A (2001) Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 52(2):182–189. doi:10.1002/1097-0029(20010115)52:2<182::AID-JEMT1004>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  21. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM, O’Malley BW (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9(18):2266–2278

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, Pinkas J, Branstetter D, Dougall WC (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468(7320):103–107. doi:nature09495 [pii] 1038/nature09495

    Article  CAS  PubMed  Google Scholar 

  23. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey DL, Boyle WJ, Khokha R, Penninger JM (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103(1):41–50

    Article  CAS  PubMed  Google Scholar 

  24. Fernandez-Valdivia R, Mukherjee A, Creighton CJ, Buser AC, DeMayo FJ, Edwards DP, Lydon JP (2008) Transcriptional response of the murine mammary gland to acute progesterone exposure. Endocrinology 149(12):6236–6250. doi:10.1210/en.2008-0768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, Kelly PA, Ormandy CJ (1999) Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol 210(1):96–106. doi:10.1006/dbio.1999.9271

    Article  CAS  PubMed  Google Scholar 

  26. Vomachka AJ, Pratt SL, Lockefeer JA, Horseman ND (2000) Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene 19(8):1077–1084. doi:10.1038/sj.onc.1203348

    Article  CAS  PubMed  Google Scholar 

  27. Talhouk RS, Bissell MJ, Werb Z (1992) Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol 118(5):1271–1282

    Article  CAS  PubMed  Google Scholar 

  28. Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z (1996) Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122(1):181–193

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen LH, Bissell MJ (1989) A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul 1(1):45–54

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Michalopoulos G, Sattler CA, Sattler GL, Pitot HC (1976) Cytochrome P-450 induction by phenobarbital and 3-methylcholanthrene in primary cultures of hepatocytes. Science 193(4256):907–909

    Article  CAS  PubMed  Google Scholar 

  31. Hall HG, Farson DA, Bissell MJ (1982) Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci U S A 79(15):4672–4676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li ML, Aggeler J, Farson DA, Hatier C, Hassell J, Bissell MJ (1987) Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A 84(1):136–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ (1989) Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105(2):223–235

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115(Pt 1):39–50

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ (2001) The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128(16):3117–3131

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fata JE, Mori H, Ewald AJ, Zhang H, Yao E, Werb Z, Bissell MJ (2007) The MAPK(ERK-1,2) pathway integrates distinct and antagonistic signals from TGFalpha and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol 306(1):193–207. doi:10.1016/j.ydbio.2007.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nguyen-Ngoc KV, Shamir ER, Huebner RJ, Beck JN, Cheung KJ, Ewald AJ (2015) 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. Methods Mol Biol 1189:135–162. doi:10.1007/978-1-4939-1164-6-10

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lasfargues EY (1957) Cultivation and behavior in vitro of the normal mammary epithelium of the adult mouse. Anat Rec 127(1):117–129

    Article  CAS  PubMed  Google Scholar 

  39. Lasfargues EY (1957) Cultivation and behavior in vitro of the normal mammary epithelium of the adult mouse. II. Observations on the secretory activity. Exp Cell Res 13(3):553–562

    Article  CAS  PubMed  Google Scholar 

  40. Flynn D, Yang J, Nandi S (1982) Growth and differentiation of primary cultures of mouse mammary epithelium embedded in collagen gel. Differentiation 22(3):191–194

    Article  CAS  PubMed  Google Scholar 

  41. Yang J, Larson L, Flynn D, Elias J, Nandi S (1982) Serum-free primary culture of human normal mammary epithelial cells in collagen gel matrix. Cell Biol Int Rep 6(10):969–975

    Article  CAS  PubMed  Google Scholar 

  42. Richards J, Guzman R, Konrad M, Yang J, Nandi S (1982) Growth of mouse mammary gland end buds cultured in a collagen gel matrix. Exp Cell Res 141(2):433–443

    Article  CAS  PubMed  Google Scholar 

  43. Darcy KM, Black JD, Hahm HA, Ip MM (1991) Mammary organoids from immature virgin rats undergo ductal and alveolar morphogenesis when grown within a reconstituted basement membrane. Exp Cell Res 196(1):49–65

    Article  CAS  PubMed  Google Scholar 

  44. Hobbs AA, Richards DA, Kessler DJ, Rosen JM (1982) Complex hormonal regulation of rat casein gene expression. J Biol Chem 257(7):3598–3605

    CAS  PubMed  Google Scholar 

  45. Pittius CW, Sankaran L, Topper YJ, Hennighausen L (1988) Comparison of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol Endocrinol 2(11):1027–1032

    Article  CAS  PubMed  Google Scholar 

  46. Schoenenberger CA, Zuk A, Groner B, Jones W, Andres AC (1990) Induction of the endogenous Whey Acidic Protein (WAP) gene and a Wap-myc hybrid gene in primary murine mammary organoids. Dev Biol 139(2):327–337

    Article  CAS  PubMed  Google Scholar 

  47. Devinoy E, Malienou-N’Gassa R, Thepot D, Puissant C, Houdebine LM (1991) Hormone responsive elements within the upstream sequences of the rabbit Whey Acidic Protein (WAP) gene direct Chloramphenicol Acetyl Transferase (CAT) reporter gene expression in transfected rabbit mammary cells. Mol Cell Endocrinol 81(1–3):185–193

    Article  CAS  PubMed  Google Scholar 

  48. Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314(5797):298–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huebner RJ, Neumann NM, Ewald AJ (2016) Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration. Development 143(6):983–993. doi:10.1242/dev.127944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vaezi A, Bauer C, Vasioukhin V, Fuchs E (2002) Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev Cell 3(3):367–381

    Article  CAS  PubMed  Google Scholar 

  51. Bianco A, Poukkula M, Cliffe A, Mathieu J, Luque CM, Fulga TA, Rorth P (2007) Two distinct modes of guidance signalling during collective migration of border cells. Nature 448(7151):362–365. doi:10.1038/nature05965

    Article  CAS  PubMed  Google Scholar 

  52. Lecaudey V, Gilmour D (2006) Organizing moving groups during morphogenesis. Curr Opin Cell Biol 18(1):102–107. doi:10.1016/j.ceb.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  53. Williams KE, Lemieux GA, Hassis ME, Olshen AB, Fisher SJ, Werb Z (2016) Quantitative proteomic analyses of mammary organoids reveals distinct signatures after exposure to environmental chemicals. Proc Natl Acad Sci U S A 113(10):E1343–E1351. doi:10.1073/pnas.1600645113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shamir ER, Pappalardo E, Jorgens DM, Coutinho K, Tsai WT, Aziz K, Auer M, Tran PT, Bader JS, Ewald AJ (2014) Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol 204(5):839–856. doi:10.1083/jcb.201306088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boussadia O, Kutsch S, Hierholzer A, Delmas V, Kemler R (2002) E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 115(1–2):53–62

    Article  CAS  PubMed  Google Scholar 

  56. Badea TC, Wang Y, Nathans J (2003) A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci 23(6):2314–2322

    CAS  PubMed  Google Scholar 

  57. Tran PT, Shroff EH, Burns TF, Thiyagarajan S, Das ST, Zabuawala T, Chen J, Cho YJ, Luong R, Tamayo P, Salih T, Aziz K, Adam SJ, Vicent S, Nielsen CH, Withofs N, Sweet-Cordero A, Gambhir SS, Rudin CM, Felsher DW (2012) Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis. PLoS Genet 8(5):e1002650. doi:10.1371/journal.pgen.1002650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Willyard C (2015) The boom in mini stomachs, brains, breasts, kidneys and more. Nature 523(7562):520–522. doi:10.1038/523520a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This book chapter was supported by a grant from the Instituto Nacional del Cáncer, Ministerio de Salud, República Argentina to M.S. M.S. is a career Conicet scientist. S.R. and I.D.B. are supported by Conicet fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Simian PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sampayo, R., Recouvreux, S., Bessone, M.I.D., Simian, M. (2018). Mammary Gland Organoids. In: Soker, S., Skardal, A. (eds) Tumor Organoids. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60511-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60511-1_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60509-8

  • Online ISBN: 978-3-319-60511-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics