Skip to main content

Introduction to Label-Free Biosensing

  • Chapter
  • First Online:
Book cover Dual-Mode Electro-photonic Silicon Biosensors

Part of the book series: Springer Theses ((Springer Theses))

  • 389 Accesses

Abstract

This section of the thesis introduces the fundamental concepts related to label-free biosensing and the theoretical concepts related to the resonant photonics employed in this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Cooper, Label-Free Biosensors Techniques and Applications (Cambridge University Press, 2009)

    Google Scholar 

  2. R.M. Lequin, Enzyme immunoassay (EIA)/ enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51(12), 2415–2418 (2005)

    Article  Google Scholar 

  3. T.G. Campbell, S.C. Howes, D.R. Fournier, L. Song, T. Piech, P.P. Patel, L. Chang, A.J. Rivnak, E.P. Ferrell, J.D. Randall, G.K. Provuncher, D.R. Walt, D.M. Rissin, C.W. Kan, D.C. Duffy, Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010)

    Google Scholar 

  4. S. Ray, G. Mehta, S. Srivastava, Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics 1002(10), 731–748 (2009)

    Google Scholar 

  5. J. Homola, S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators 54(54), 3–15 (1999)

    Article  Google Scholar 

  6. GE Healhtcare. Biacore, 2006, https://www.biacore.com/lifesciences/index.html

  7. M. Alvarez, M. Carmen, Estevez, L.M. Lechuga, Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6(4), 463487 (2012)

    Google Scholar 

  8. J.M. Rodrguez-Frade, M. Mellado, J. Trevio, A. Calle, and L.M. Lechuga, Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay. Talanta 78(3), 1011–1016 (2009)

    Google Scholar 

  9. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)

    Article  Google Scholar 

  10. B.T. Cunningham, L. Laing, Microplate-based, label-free detection of biomolecular interactions: applications in proteomics. Expert Rev. Proteomics 3(3), 271–281 (2006)

    Article  Google Scholar 

  11. R. Puchades, M.-J. Bauls, N. Maquieira, Chemical surface modifications for the development of silicon-based label-free integrated optical (io) biosensors: a review. Analytica Chimica Acta 777, 1–16 (2013)

    Google Scholar 

  12. J.C. Ramirez A. Fernndez Gavela, D. Grajales Garca and L. M. Lechuga. Last advances in silicon-based optical biosensors. Sensors 16(3):285–300, 2016

    Google Scholar 

  13. J.C. Hoogvliet, M. Dijksma, B. Kamp, W.P. van Bennekom. Development of an electrochemical immunosensor for direct detection of interferon-gamma at the attomolar level. Anal Chem. 5(73), 901–907 (2001)

    Google Scholar 

  14. Y. Cui, W.U. Wang, G.F. Zheng, F. Patolsky, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005)

    Article  Google Scholar 

  15. Florian Reuter Martin Nirschl, Janos Vrs, Review of transducer principles for label-free biomolecular interaction analysis. Biosensors 1, 70–92 (2011)

    Article  Google Scholar 

  16. A.P.F. Turner, Biosensors: sense and sensibility. Chem. Soc. Rev. 42, 3184–3196 (2013)

    Article  Google Scholar 

  17. X. Luo, J. Davis, Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev., 5944–5962 (2013)

    Google Scholar 

  18. S. Liu, X. Guo, Carbon nanomaterials field-effect-transistor-based biosensors. Npg Asia Mater., 121–131 (2012)

    Google Scholar 

  19. J.H. Niazi Y. Gurbuz B.S. Youn, J.W. Park, S.S. Kallempudi, M.B. Gu, Rapid and sensitive detection of nampt (pbef/visfatin) in human serum using an ssdna aptamer-based capacitive biosensor. Biosens. Bioelectron., 233–238 (2012)

    Google Scholar 

  20. W. Lorenz, K.D. Schulze, Zur anwendung der transformationsimpedanzspektrometrie. J. Electroanal. Chem. Interfacial Electrochem. (1975)

    Google Scholar 

  21. P. Bergvled, The development and application of fet-based biosensors. Biosensors, 15–33 (1986)

    Google Scholar 

  22. L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. New York Acad. Sci. 102(1), 29–45 (1962)

    Google Scholar 

  23. J. Wu, L. Yin, Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor. ACS Appl. Mater. Interfaces 3(11), 4354–4362 (2011)

    Article  Google Scholar 

  24. Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, C. Chen, S. Yao, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473–4491 (2013)

    Article  Google Scholar 

  25. L. G. Bachas K. M. L. May, A. Vogt, K. W. Anderson. Vascular endothelial growth factor as a biomarker for the early detection of cancer using a whole cell-based biosensor. Anal. Bioanal. Chem., 1010–1116 (2005)

    Google Scholar 

  26. B. Li, K.I. Chena, Y. Chena, The development and application of fet-based silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 131–154 (2011)

    Google Scholar 

  27. J.Y. Huang, M.H. Yun, X.L. Luo, I. Lee, X.Y.T. Cui, Ultrasensitive protein detection using an aptamer-functionalized single polyaniline nanowire. Chem. Commun. 47(12), 6368–6370 (2011)

    Article  Google Scholar 

  28. X.L. Luo, M.Y. Xu, J.J. Davis, The label free picomolar detection of insulin in blood serum. Biosens. Bioelectron. 39(1), 21–25 (2013)

    Article  Google Scholar 

  29. H. Rahmani, B. Rezaei, N. Majidi, T. Khayamian, Electrochemical impedimetric immunosensor for insulin like growth factor-1 using specific monoclonal antibody-nanogold modified electrode. Biosens. Bioelectron. 26(5), 2130–2134 (2011)

    Article  Google Scholar 

  30. A. Abulrob, A.C. Tavares, R. Elshafey, C. Tlili, M. Zourob, Label-free impedimetric immunosensor for ultrasensitive detection of cancer marker murine double minute 2 in brain tissue. Biosens. Bioelectron. 39(1), 220–225 (2013)

    Article  Google Scholar 

  31. N. Zine, G. Gabriel, A. Guimera, F. J. del Campo, R. Villa, A. H. Eisenberg, M. Mrksich, A. Errachid, J. Aguilo, E. Prats-Alfonso, X. Sisquella, F. Albericio, Cancer prognostics by direct detection of p53-antibodies on gold surfaces by impedance measurements. Small 8(1), 2106–2115 (2012)

    Google Scholar 

  32. B.R. Li, K.I. Chen, Y.T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano today 6(2), 131–154 (2011)

    Article  Google Scholar 

  33. A.O. Aluoch, O.A. Sadik, A.L. Zhou, Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron. 24(9), 2749–2765 (2009)

    Article  Google Scholar 

  34. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, D. Van Thourhout, Nanophotonic waveguides in silicon-on-insulator fabricated with cmos technology. J. Lightwave Technol. 23(1), 401–412 (2005)

    Article  ADS  Google Scholar 

  35. D.J. Griffiths, Introduction to Electrodynamics, 3rd edn. (Prentice-Hall International Inc., NJ 07458, 1999)

    Google Scholar 

  36. K. Okamoto. Fundamentals of Optical Waveguides(Elsevier, 2006)

    Google Scholar 

  37. R.G. Heideman, P.V. Lambeck, Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated machzehnder interferometer system. Sens. Actuators B: Chem. 61(13), 100 – 127 (1999), http://www.sciencedirect.com/science/article/pii/S092540059900283X

  38. C. Domnguez, K.E. Zinoviev, A.B. Gonzalez-Guerrero, L.M. Lechuga, Integrated bimodal waveguide interferometric biosensor for label-free analysis. J. Lightwave Technol. 13(29) (2011)

    Google Scholar 

  39. Y.A. Vlasov, S. Assefa, C. Kang, C.T. Phare, S.M. Weiss, Photonic crystal slab sensor with enhanced surface area. Opt. Express 18(26), 27930–27937 (2010a)

    Article  ADS  Google Scholar 

  40. S. Lee, S. Chan, Eom, J. Soo Chang, C. Huh, G. Yong Sung, J. H. Shin, Label-free optical biosensing using a horizontal air-slot sinx microdisk resonator. Opt. Express 18(20), 20638–20644 (2010)

    Google Scholar 

  41. M.G. Scullion, T.F. Krauss, A. Di Falco, Slotted photonic crystals for biosensing applications. Proc. SPIE 8425, 842507–842508 (2012)

    Article  Google Scholar 

  42. C.A. Barrios, K.B. Gylfason, B. Sanchez, A. Griol, H. Sohlstrom, M. Holgado, R. Casquel, Slot-waveguide biochemical sensor. Opt. Lett. 32(21), 3080–3082 (2007)

    Article  ADS  Google Scholar 

  43. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15(12), 7610–7615 (2007)

    Article  ADS  Google Scholar 

  44. K. Woo, K.J. Sheng Kee, Y. Shin, K. Han, Y. Yoon, G. Qiang, L.Q. Liu, X. Tu, M. Kyoung Park, Highly sensitive machzehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B: Chem. 188, 681–688 (2013)

    Google Scholar 

  45. A. B. Gonzalez-Guerrero J. Osmond K. Zinoviev B. Sepulveda C. Dominguez S. Dante, D. Duval, L. M. Lechuga, Towards a complete lab-on-chip system using integrated mach-zehnder interferometers. Opt Pure Appl. 45:87–95, 2012

    Google Scholar 

  46. S. Xiao, N. Mortensen, Highly dispersive photonic band-gap-edge optofluidic biosensors. J. Eur. Opt. Soc. Rapid publications 1(0) (2006)

    Google Scholar 

  47. C. Smith, M.W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T.F. Krauss, R.C. McPhedran, U. Bog, L. Cameron, B.J. Eggleton, High-q microfluidic cavities in silicon-based two-dimensional photonic crystal structures. Opt. Lett. 33(19), 2206–2208 (2008)

    Article  ADS  Google Scholar 

  48. T.-Y. Chang, M. Huang, A.A. Yanik, H. Altug, Sub-wavelength nanofluidics in photonic crystal sensors. Opt. Express 17(26), 24224–24233 (2009)

    Article  ADS  Google Scholar 

  49. E. Hallynck, P. Bienstman, Photonic crystal biosensor based on angular spectrumanalysis. 18(17), 1816418170 (2010)

    Google Scholar 

  50. M.R. Lee, P.M. Fauchet, Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express 15(8), 4530–4535 (2007)

    Article  ADS  Google Scholar 

  51. M.A. Dündar, R. Nötzel, M.J. van der Hoek, S. He, B. Wang, T. Siahaan, R.W. van der Heijden, Photonic crystal cavity on optical fiber facet for refractive index sensing. Opt. Lett. 37(5), 833–835 (2012)

    Article  ADS  Google Scholar 

  52. K.L. Watkin, L.L. Chan, S.L. Gosangari, B.T. Cunningham, A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation. Apoptosis 12(6), 1061–1068 (2007)

    Article  Google Scholar 

  53. D. Stellinga, M.G. Scullion, G.J.O. Evans, G.J. Triggs, M. Fischer, T.F. Krauss, Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing. IEEE Photon. J. 7(3), 1–10 (2015)

    Google Scholar 

  54. W.C Lai, C.Y. Lin, Y. Zou, S. Chakravarty, R.T. Chen, Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform. Lab Chip 12, 2309–2312 (2012)

    Google Scholar 

  55. Genalyte. Genalyte, 2009, http://www.http://genalyte.com/

  56. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Selvaraja, P. Claes, P.Bienstman Dumon, D. Van Thourhout, R. Baets, Silicon microring resonators. Laser Photon. Rev.6(1), 47–73 (2012)

    Google Scholar 

  57. K. De Vos, Label-free silicon photonics biosensor platform with microring resonators. PhD thesis, University of Ghent, 2010

    Google Scholar 

  58. T. Klaes, Advanced silicon photonic ring resonator label-free biosensors. University of Ghent, 2012

    Google Scholar 

  59. A. Densemore, D.X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J.H. Schmid, E. Post, A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photon. Technol. Lett. 18, 2520–2522 (2006)

    Article  ADS  Google Scholar 

  60. J.C. Aldridge, T.A Desai, J. Hryniewicz, N. Chbouki, B.E. Little, O. King V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M.S. Unlu, A. Yalcin, K.C. Popat, B.B. Goldberg, Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quant. Electron. 12(1), 148–155 (2006)

    Google Scholar 

  61. B. Spaugh, F. Tybor, W.G. Gunn, M. Hochberg, T. Baehr-Jones, R.C. Bailey, M. Iqbal, M.A. Gleeson, L.C. Gunn, Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J. Sel. Topics Quantum Electron. 16(3), 654–661 (2010)

    Article  Google Scholar 

  62. S. Choi, I. Jang, J.S. Choi, H.I Jung, H.J. Lee, J.H. Lee, Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers. Appl. Phys. Lett. 103(5) (2013)

    Google Scholar 

  63. A. Kazmierczak, F. Dortu, M.J. Banuls, Polo A. Maquieira Catala, G.M. Kresbach, H. Sohlstreom, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C.A. Barrios, G. Stemmea, C.F. Carlborg, K.B. Gylfason, W. van der Wijngaarta, A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab Chip 10(5), 281–290 (2010)

    Google Scholar 

  64. P. Taranekar, R.R. Ponnapati, W. Knoll, A. Baba, R.C. Advincula, Electrochemical surface plasmon resonance (ec-spr) and waveguide enhanced glucose biosensing with n-alkylaminated polypyrrole/glucose oxidase multilayers. ACS Appl. Mater. Interfaces 2(8), 2347–2354 (2010)

    Google Scholar 

  65. Michael Rodahl, Bengt Kasemo, A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Rev. Sci. Instrum. 67(9), 3238–3241 (1996)

    Article  ADS  Google Scholar 

  66. Yong Chen, Hai Ming, Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photon. Sensors 2(1), 37–49 (2012)

    Article  ADS  Google Scholar 

  67. Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth. Sens. Actuators B: Chem. 174, 94–101 (2012)

    Google Scholar 

  68. A. Reisinger, Characteristics of optical guided modes in lossy waveguides. Appl. Opt. 12(5), 1015–1025 (1973)

    Article  ADS  Google Scholar 

  69. S. Ehsan, Salamifar and Rebecca Y. Lai. Application of electrochemical surface plasmon resonance spectroscopy for characterization of electrochemical DNA sensors. Colloids Surfaces B: Biointerfaces 122, 835–839 (2014)

    Google Scholar 

  70. L. Coche-Guérentee, S. Armand, P. Labbé, A. Bouchet-Spinelli, B. Reuillard, S. Fort, Oligosaccharide biosensor for direct monitoring of enzymatic activities using qcm-d. Biosens. Bioelectron. 49, 290–296 (2013)

    Article  Google Scholar 

  71. J.A. Hubbell J.P. Bearinger, J. Vrs, M. Textor, Electrochemical optical waveguide lightmode spectroscopy (ec-owls): A pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ito)-coated waveguide chips. Biotechnol. Bioeng. 82(4), 465–473 (2003)

    Google Scholar 

  72. J.J. Ramsden, Review of new experimental techniques for investigating random sequential adsorption. J. Stat. Phys. 73(5), 853–877 (1993a)

    Article  ADS  MATH  Google Scholar 

  73. A. Marti, M. Textor, P. Tengvall, J.J. Ramsden, R. Kurrat, B. Wlivaara, N.D. Spencer, Plasma protein adsorption on titanium: comparative in situ studies using optical waveguide lightmode spectroscopy and ellipsometry. Colloids Surfaces B: Biointerfaces 11(4), 187–201 (1998)

    Article  Google Scholar 

  74. A.D. Weston, L. Hood, Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 2(3), 179–196 (2004)

    Article  Google Scholar 

  75. A.D. Edwards, Steric hindrance effects on surface reactions: applications to biacore. J. Math. Biol. 55(4), 517–539 (2007)

    Google Scholar 

  76. R.A. Edwards, R.E. Huber, Surface denaturation of proteins: the thermal inactivation of beta-galactosidase (escherichia coli) on wall-liquid surfaces. Biochem Cell Biol. 70(1), 63–69 (1992)

    Article  Google Scholar 

  77. P. Colpo, A. Ruiz, L. Ceriotti, F. Rossi, Surface Functionalization for Protein and Cell Patterning (Springer, Berlin, 2010), pp. 109–130

    Google Scholar 

  78. A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)

    Article  Google Scholar 

  79. W.C. Bigelow, D.L. Pickett, W.A. Zisman, Oleophobic monolayers. J. Colloid Sci. 1(6), 513–538 (1946)

    Article  Google Scholar 

  80. Seokheun Choi, Junseok Chae, Methods of reducing non-specific adsorption in microfluidic biosensors. J. Micromech. Microeng. 20(7), 075015 (2010)

    Article  ADS  Google Scholar 

  81. Y. Tai Tao, S.R. Wasserman, G.M. Whitesides, Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates. Langmuir 5(4), 1074–1087 (1989)

    Google Scholar 

  82. T. Okubo, Y. Yamaguchi, M. Hu, S. Noda, Hiroshi Komiyama, Structure and morphology of self-assembled 3-mercaptopropyltrimethoxysilane layers on silicon oxide. Appl. Surface Sci. 181(34), 307–316 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Juan Colás .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Juan Colás, J. (2017). Introduction to Label-Free Biosensing. In: Dual-Mode Electro-photonic Silicon Biosensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-60501-2_2

Download citation

Publish with us

Policies and ethics