Introduction

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this dissertation, we revisit the prospects of a strongly interacting theory for the Electroweak Symmetry Breaking Sector (EWSBS) of the Standard Model, after the discovery at the LHC of a Higgs-like boson at \(\sim 125\,\mathrm{GeV}\). The tools of Effective Chiral Lagrangians and unitarization procedures will be used, and the old Higgsless Electroweak Chiral Lagrangian (EChL) will be extended to accommodate a Higgs-like boson at \(\sim 125\,\mathrm{GeV}\). Since the discovery of the Higgs-like boson at the LHC, this field has received increasing attention. I hope that this dissertation, besides our original results that will be described, can be a useful introduction to the field of a strongly interacting EWSBS with a light Higgs but below the possible new-physics scale. To this end, several appendices with detailed computations have been included. And some of the sections, especially those containing the physical fundamentation of the computational procedures, are very detailed.

References

  1. 1.
    ATLAS Collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168, ATLAS-COM-CONF-2012-203 (2012)Google Scholar
  2. 2.
    CMS Collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012)Google Scholar
  3. 3.
    S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    T. Appelquist, C.W. Bernard, Strongly interacting Higgs Bosons. Phys. Rev. D 22, 200 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    T. Appelquist, M.J. Bowick, E. Cohler, A.I. Hauser, The breaking of Isospin symmetry in theories with a dynamical Higgs mechanism. Phys. Rev. D 31, 1676 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    A.C. Longhitano, Low-energy impact of a heavy Higgs Boson sector. Nucl. Phys. B 188, 118 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    A.C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam model. Phys. Rev. D 22, 1166 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    G. Cvetic, R. Kogerler, Fermionic couplings in an electroweak theory with nonlinear spontaneous symmetry breaking. Nucl. Phys. B 328, 342 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    A. Dobado, M.J. Herrero, Phenomenological Lagrangian approach to the symmetry breaking sector of the standard model. Phys. Lett. B 228, 495 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    A. Dobado, M.J. Herrero, Testing the hypothesis of strongly interacting longitudinal weak Bosons in electron—Positron Collisions at Tev Energies. Phys. Lett. B 233, 505 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    A. Dobado, M.J. Herrero, T.N. Truong, Study of the strongly interacting Higgs sector. Phys. Lett. B 235, 129 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    A. Dobado, M.J. Herrero, J. Terron, The role of Chiral Lagrangians in strongly interacting \(W\)(l) \(W\)(l) signals at \(pp\) supercolliders. Z. Phys. C 50, 205–220 (1991)CrossRefGoogle Scholar
  13. 13.
    A. Dobado, D. Espriu, M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP. Phys. Lett. B 255, 405–414 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    A. Dobado, M.J. Herrero, J.R. Pelaez, E.R. Morales, M.T. Urdiales, Learning about the strongly interacting symmetry breaking sector at LHC. Phys. Lett. B352, 400–410 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    A. Dobado, M.J. Herrero, J.R. Pelaez, E.R. Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector. Phys. Rev. D 62, 055011 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    B. Holdom, J. Terning, Large corrections to electroweak parameters in technicolor theories. Phys. Lett. B 247, 88–92 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    M. Golden, L. Randall, Radiative corrections to electroweak parameters in technicolor theories. Nucl. Phys. B 361, 3–23 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    D. Espriu, J. Manzano, CP violation and family mixing in the effective electroweak Lagrangian. Phys. Rev. D 63, 073008 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    G. Buchalla, O. Cata, Effective theory of a dynamically broken electroweak standard model at NLO. JHEP 07, 101 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    G. Buchalla, O. Cata, R. Rahn, M. Schlaffer, Effective field theory analysis of new physics in \({\text{ e }}+{\text{ e }}- \rightarrow {\text{ W }}+{\text{ W }}-\) at a linear collider. Eur. Phys. J. C 73, 2589 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin, J. Yepes, Minimal flavour violation with strong Higgs dynamics. JHEP 06, 076 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    F. Feruglio, The Chiral approach to the electroweak interactions. Int. J. Mod. Phys. A 8, 4937–4972 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    J. Bagger, V.D. Barger, K.-M. Cheung, J.F. Gunion, T. Han, G.A. Ladinsky, R. Rosenfeld, C.P. Yuan, The strongly interacting W W system: gold plated modes. Phys. Rev. D 49, 1246–1264 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    V. Koulovassilopoulos, R.S. Chivukula, The phenomenology of a nonstandard Higgs boson in W(L) W(L) scattering. Phys. Rev. D 50, 3218–3234 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    C.P. Burgess, J. Matias, M. Pospelov, A Higgs or not a Higgs? What to do if you discover a new scalar particle. Int. J. Mod. Phys. A 17, 1841–1918 (2002)ADSCrossRefMATHGoogle Scholar
  26. 26.
    L.-M. Wang, Q. Wang, Electroweak chiral Lagrangian for neutral Higgs boson. Chin. Phys. Lett. 25, 1984 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    B. Grinstein, M. Trott, A Higgs-Higgs bound state due to new physics at a TeV. Phys. Rev. D 76, 073002 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin, J. Yepes, The effective Chiral Lagrangian for a light dynamical "Higgs particle. Phys. Lett. B 722(4), 330–335 (2013)ADSCrossRefMATHGoogle Scholar
  29. 29.
    G. Buchalla, O. Catà, C. Krause, Complete electroweak Chiral Lagrangian with a light Higgs at NLO. Nucl. Phys. B 880, 552–573 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    G. Buchalla, O. Catà, C. Krause, On the power counting in effective field theories. Phys. Lett. B 731, 80–86 (2014)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner, M. Spira, Effective Lagrangian for a light Higgs-like scalar. JHEP 07, 035 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    I. Brivio, O.J.P. Éboli, M.B. Gavela, M.C. Gonzalez-Garcia, L. Merlo, S. Rigolin, Higgs ultraviolet softening. JHEP 12, 004 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    M.B. Gavela, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, L. Merlo, S. Rigolin, J. Yepes, CP violation with a dynamical Higgs. JHEP 10, 44 (2014)ADSGoogle Scholar
  34. 34.
    R.L. Delgado, A. Dobado, F.J. Llanes-Estrada, Light ‘Higgs’, yet strong interactions. J. Phys. G41, 025002 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    R.L. Delgado, A. Dobado, F.J. Llanes-Estrada, One-loop \(W_LW_L\) and \(Z_LZ_L\) scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar. JHEP 1402, 121 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    R. Delgado, A. Dobado, M. Herrero, J. Sanz-Cillero, One-loop \(\gamma \gamma \rightarrow W^+_L W^-_L\) and \(\gamma \gamma \rightarrow Z_L Z_L\) from the Electroweak Chiral Lagrangian with a light Higgs-like scalar. JHEP 1407, 149 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    R.L. Delgado, A. Dobado, M.J. Herrero, J.J. Sanz-Cillero, “Electroweak Chiral Lagrangians and \(Z_LZ_L, W^+_L W^-_L\) at One Loop", in Proceedings, 2nd Conference on Large Hadron Collider Physics Conference (LHCP 2014) (2014), arXiv:1409.3983 [hep-ph]
  38. 38.
    R.L. Delgado, A. Dobado, F.J. Llanes-Estrada, Unitarity, analyticity, dispersion relations, and resonances in strongly interacting \(W_LW_L, Z_LZ_L\), and hh scattering. Phys. Rev. D 91, 075017 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    R.L. Delgado, A. Dobado, F.J. Llanes-Estrada, Possible new resonance from \(W_{L}W_{L}-hh\) interchannel coupling. Phys. Rev. Lett. 114, 221803 (2015)Google Scholar
  40. 40.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, 1995th edn. (Westview, Boulder, CO, 1995)Google Scholar
  41. 41.
    J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model, Cambridge Monographs on Particle Physics, Nuclear Physics, and Cosmology (Cambridge Univ. Press, Cambridge, 1992)Google Scholar
  42. 42.
    P. Ramond, Field Theory: A Modern Primer, Frontiers in Physics (Westview Press, New York, 1997)Google Scholar
  43. 43.
    K. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    M. Creutz, Quarks, Gluons and Lattices, 2nd edn. (Cambridge Univ. Press, Cambridge, 1985)Google Scholar
  45. 45.
    S. Weinberg, Nonlinear realizations of chiral symmetry. Phys. Rev. 166, 1568–1577 (1968)ADSCrossRefGoogle Scholar
  46. 46.
    S. Weinberg, Phenomenological Lagrangians. Physica A 96, 327 (1979)ADSCrossRefGoogle Scholar
  47. 47.
    J. Gasser, H. Leutwyler, Chiral Perturbation theory to one loop. Ann. Phys. 158, 142 (1984)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    J. Gasser, H. Leutwyler, Chiral Perturbation theory: expansions in the mass of the strange Quark. Nucl. Phys. B 250, 465 (1985)ADSCrossRefGoogle Scholar
  49. 49.
    J. Gasser, H. Leutwyler, Low-energy expansion of Meson form-factors. Nucl. Phys. B 250, 517–538 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    R.L. Delgado, C. Hidalgo-Duque, F.J. Llanes-Estrada, To what extent is Gluon confinement an empirical fact? Few Body Syst. 54, 1705–1717 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    S. De Curtis, S. Moretti, K. Yagyu, E. Yildirim, “Perturbative unitarity bounds in composite 2-Higgs doublet models", (2016), arXiv:1602.06437 [hep-ph]
  52. 52.
    P.W. Anderson, Plasmons, Gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    F. Englert, R. Brout, Broken symmetry and the mass of Gauge vector Mesons. Phys. Rev. Lett. 13, 321–323 (1964)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    P.W. Higgs, Broken symmetries and the masses of Gauge Bosons. Phys. Rev. Lett. 13, 508–509 (1964)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)ADSCrossRefGoogle Scholar
  57. 57.
    R. Barate et al., Search for the standard model Higgs boson at LEP. Phys. Lett. B 565, 61–75 (2003)CrossRefGoogle Scholar
  58. 58.
    A Combination of preliminary electroweak measurements and constraints on the standard model", (2002), arXiv:hep-ex/0212036 [hep-ex]
  59. 59.
    G. Aad et al., Search for heavy vector-like quarks coupling to light quarks in protonproton collisions at \(\sqrt{s} = 7\, \text{ TeV }\) with the ATLAS detector. Phys. Lett. B 712, 22–39 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    G. Aad et al., Search for long-lived, multi-charged particles in pp collisions at p s = 7 TeV using the ATLAS detector. Phys. Lett. B 722, 305–323 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    S. Chatrchyan et al., Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS. Phys. Lett. B 704, 123–142 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    A. Liddle, An Introduction to Modern Cosmology (Wiley, Chichester, 2002)Google Scholar
  63. 63.
    P. Schneider, Extragalactic Astronomy and Cosmology. An Introduction, Extraterrestrial Space Sciences (Springer, Berlin, 2006)Google Scholar
  64. 64.
    R.P. Kirshner, The Extravagant Universe: Exploding Stars, Dark Energy, and the Accelerating Cosmos (Princeton University Press, Princeton, 2002)MATHGoogle Scholar
  65. 65.
    D.O.B.W. Carroll, An Introduction to Modern Astrophysics (Pearson-Addison Wesley, 2007)Google Scholar
  66. 66.
    M. Sher, Electroweak Higgs potentials and vacuum stability. Phys. Rept. 179, 273–418 (1989)ADSCrossRefGoogle Scholar
  67. 67.
    C. Ford, D.R.T. Jones, P.W. Stephenson, M.B. Einhorn, The effective potential and the renormalization group. Nucl. Phys. B 395, 17–34 (1993)ADSCrossRefGoogle Scholar
  68. 68.
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl, M. Shaposhnikov, Higgs boson mass and new physics. JHEP 10, 140 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    J.R. Espinosa, C. Grojean, Implications of the Higgs boson discovery. Comptes Rendus Phys. 16, 394–406 (2015)CrossRefGoogle Scholar
  70. 70.
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, A. Strumia, Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B 709, 222–228 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    G. Isidori, G. Ridolfi, A. Strumia, On the metastability of the standard model vacuum. Nucl. Phys. B 609, 387–409 (2001)ADSCrossRefMATHGoogle Scholar
  72. 72.
    J.A. Casas, J.R. Espinosa, M. Quiros, Standard model stability bounds for new physics within LHC reach. Phys. Lett. B 382, 374–382 (1996)ADSCrossRefGoogle Scholar
  73. 73.
    S. Baum, On the metastability of the Standard Model, MA thesis (Uppsala U., 2015)Google Scholar
  74. 74.
    G. Degrassi, The role of the top quark in the stability of the SM Higgs potential. Nuovo Cim. C 037, 47–53 (2014)Google Scholar
  75. 75.
    D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A. Salvio, A. Strumia, Investigating the near-criticality of the Higgs boson. JHEP 12, 089 (2013)ADSCrossRefGoogle Scholar
  76. 76.
    J. Goldstone, Field theories with superconductor solutions. Nuovo Cim. 19, 154–164 (1961)ADSMathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965–970 (1962)ADSMathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    K. Agashe, R. Contino, A. Pomarol, The minimal composite Higgs model. Nucl. Phys. B 719, 165–187 (2005)ADSCrossRefGoogle Scholar
  79. 79.
    R. Contino, L. Da Rold, A. Pomarol, Light custodians in natural composite Higgs models. Phys. Rev. D 75, 055014 (2007)ADSCrossRefGoogle Scholar
  80. 80.
    R. Contino, D. Marzocca, D. Pappadopulo, R. Rattazzi, On the effect of resonances in composite Higgs phenomenology. JHEP 10, 081 (2011)ADSCrossRefMATHGoogle Scholar
  81. 81.
    D. Barducci, A. Belyaev, M.S. Brown, S. De Curtis, S. Moretti, G.M. Pruna, The 4-dimensional composite Higgs model (4DCHM) and the 125 GeV Higgs-like signals at the LHC. JHEP 09, 047 (2013)ADSCrossRefGoogle Scholar
  82. 82.
    E. Halyo, Technidilaton or Higgs? Mod. Phys. Lett. 8(03), 275–283 (1993)ADSCrossRefGoogle Scholar
  83. 83.
    W.D. Goldberger, B. Grinstein, W. Skiba, Distinguishing the Higgs boson from the dilaton at the large Hadron collider. Phys. Rev. Lett. 100, 111802 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    A. Dobado, R.L. Delgado, F.J. Llanes-Estrada, Strongly interacting electroweak symmetry breaking sector with a Higgs-like light scalar. AIP Conf. Proc. 1606, 151–158 (2014)ADSCrossRefGoogle Scholar
  85. 85.
    R.L. Delgado, A. Dobado, F.J. Llanes-Estrada, Strongly interacting \(W_LW_L, Z_LZ_L\) and hh from unitarized one-loop computations. Nucl. Part. Phys. Proc. 273–275, 2436–2438 (2016)CrossRefGoogle Scholar
  86. 86.
    R.L. Delgado, A. Dobado, M.J. Herrero, J.J. Sanz-Cillero, Electroweak chiral Lagrangian with a light Higgs and \(\gamma \gamma \rightarrow Z_LZ_L, W^+_L W^-_L\) scattering at one loop. Nucl. Part. Phys. Proc. 273–275, 703–709 (2016)CrossRefGoogle Scholar
  87. 87.
    R.L. Delgado, A. Dobado, F.J. Llanes-Estrada, A strongly interacting electroweak symmetry breaking sector with a Higgs-like light scalar. AIP Conf. Proc. 1701, 090003 (2016)CrossRefGoogle Scholar
  88. 88.
    A. Dobado, R.L. Delgado, F.J. Llanes-Estrada, Resonances in \(W_LW_L,Z_LZ_L\) and \(hh\) scattering from dispersive analysis of the non-linear Electroweak + Higgs Effective Theory, PoS EPS-HEP2015, 173 (2015)Google Scholar
  89. 89.
    F.J. Llanes-Estrada, A. Dobado, R.L. Delgado, “Describing 2-TeV scale WLWL resonances with Unitarized effective theory", in 18th Workshop on What Comes eyond the Standard Models? (Bled, Slovenia, July 11–19, 2015), arXiv:1509.00441 [hep-ph]
  90. 90.
    A. Dobado, A. Gómez-Nicola, A.L. Maroto, J.R. Peláez, Effective Lagrangians for the Standard model, Texts and Monographs in Physics (Springer, Berlin, 1997)CrossRefMATHGoogle Scholar
  91. 91.
    A. Dobado, J.R. Pelaez, The Inverse amplitude method in chiral Perturbation theory. Phys. Rev. D 56, 3057–3073 (1997)ADSCrossRefGoogle Scholar
  92. 92.
    S.D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S.M. Flatte, J.H. Friedman, T.A. Lasinski, G.R. Lynch, M.S. Rabin, F.T. Solmitz, Pi pi partial wave analysis from reactions \(\text{ pi }+ \text{ p } \rightarrow \text{ pi }+ \text{ pi }-\) Delta++ and \(\text{ pi }+ \text{ p }\rightarrow \text{ K }+ \text{ K }-\) Delta++ at 7.1-GeV/c. Phys. Rev. D 7, 1279 (1973)ADSCrossRefGoogle Scholar
  93. 93.
    G. Grayer et al., High statistics study of the reaction \(\text{ pi }- \text{ p } \rightarrow \text{ pi }- \text{ pi }+\) n: apparatus, method of analysis, and general features of results at 17-GeV/c. Nucl. Phys. B 75, 189–245 (1974)Google Scholar
  94. 94.
    M.J. Losty, V. Chaloupka, A. Ferrando, L. Montanet, E. Paul, D. Yaffe, A. Zieminski, J. Alitti, B. Gandois, J. Louie, A study of pi–pi–scattering from pi–p interactions at 3.93-GeV/c. Nucl. Phys. B69, 185–204 (1974)ADSCrossRefGoogle Scholar
  95. 95.
    P. Estabrooks, A.D. Martin, pi pi phase shift analysis below the K anti-K Threshold. Nucl. Phys. B 79, 301–316 (1974)ADSCrossRefGoogle Scholar
  96. 96.
    V. Srinivasan et al., \(\text{ Pi }- \text{ pi }+ \rightarrow \text{ pi }- \text{ pi }+\) interactions below 0.7-GeV from \(\text{ pi }- \text{ p } \rightarrow \text{ pi }-\text{ pi }+ \text{ n }\) Data at 5-GeV/c. Phys. Rev. D 12, 681 (1975)ADSCrossRefGoogle Scholar
  97. 97.
    L. Rosselet et al., Experimental study of 30,000 K(e4) decays. Phys. Rev. D 15, 574 (1977)ADSCrossRefGoogle Scholar
  98. 98.
    W. Hoogland et al., Measurement and analysis of the pi+ pi+ system produced at small momentum transfer in the reaction pi+ p ! pi+ pi+ n at 12.5-GeV. Nucl. Phys. B126, 109 (1977)ADSCrossRefGoogle Scholar
  99. 99.
    R. Mercer et al., K pi scattering phase shifts determined from the reactions \(\text{ k }+ \text{ p } \rightarrow \text{ k }+ \text{ pi }-\) delta++ and \(\text{ k }+ \text{ p } \rightarrow \text{ k }0 \text{ pi }0\) delta++. Nucl. Phys. B 32, 381–414 (1971)ADSCrossRefGoogle Scholar
  100. 100.
    H.H. Bingham et al., A new analysis of K pi scattering as observed in \(\text{ K }+ \text{ p } \rightarrow \text{ K }+ \text{ pi }0\) DELTA++ from 3-GeV/c to 13-GeV/c. Nucl. Phys. B 41, 1–34 (1972)ADSCrossRefGoogle Scholar
  101. 101.
    D. Linglin et al., K- pi- elastic scattering cross-section measured in 14.3 gev/c k- p interactions. Nucl. Phys. B57, 64–76 (1973)ADSCrossRefGoogle Scholar
  102. 102.
    M.J. Matison, A. Barbaro-Galtieri, M. Alston-Garnjost, S.M. Flatte, J.H. Friedman, G.R. Lynch, M.S. Rabin, F.T. Solmitz, Study of \(\text{ K }+\) pi- scattering in the reaction \(\text{ K }+ \text{ p } \rightarrow \text{ K }+\) pi- Delta++ at 12-GeV/c. Phys. Rev. D 9, 1872 (1974)ADSCrossRefGoogle Scholar
  103. 103.
    S.L. Baker et al., A study of K+ pi- elastic scattering in the reaction \(\text{ K }+ \text{ n } \rightarrow \text{ K }+\) pi- p between 2.0-GeV/c and 3.0-GeV/c. Nucl. Phys. B99, 211 (1975)ADSCrossRefGoogle Scholar
  104. 104.
    P. Estabrooks, R.K. Carnegie, A.D. Martin, W.M. Dunwoodie, T.A. Lasinski, D.W.G.S. Leith, Study of K pi scattering using the reactions \(\text{ K }^{\pm } {\text{ p }} \rightarrow \text{ K } {\text{ pi }}+ {\text{ n }}\) and \(\text{ K }^{\pm } {\text{ p }} \rightarrow \text{ K } \text{ pi }-\) Delta++ at 13-GeV/c. Nucl. Phys. B 133, 490–524 (1978)ADSCrossRefGoogle Scholar
  105. 105.
    M. Taševský, Status of the AFP project in the ATLAS experiment. AIP Conf. Proc. 1654, 090001 (2015)CrossRefGoogle Scholar
  106. 106.
    M. Albrow et al., CMS-TOTEM Precision Proton Spectrometer, tech. rep. CERNLHCC-2014-021. TOTEM-TDR-003. CMS-TDR-13 (CERN, Geneva, Sept 2014)Google Scholar
  107. 107.
    V. Berardi et al., Total Cross-Section, Elastic Scattering and Diffraction Dissociation at the Large Hadron Collider at CERN: Addendum to the TOTEM Technical Design Report, TOTEM-TDR-001-add-1, Submitted on 18 Jun 2004 (CERN, Geneva, 2004)Google Scholar
  108. 108.
    S. Chatrchyan et al., Study of exclusive two-photon production of W\(^+\)W\(^-\) in pp collisions at \(\sqrt{s} = 7\, {\text{ TeV }}\) and constraints on anomalous quartic gauge couplings. JHEP 07, 116 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Facultad de Ciencias Físicas, Theoretical Physics I DepartmentComplutense University of MadridMadridSpain

Personalised recommendations