Skip to main content

Removal of Fluoride from Ground Water by Adsorption Using Industrial Solid Waste (Fly Ash)

  • Conference paper
  • First Online:

Abstract

The fluoride removal ability of industrial waste (fly ash) from ground water was studied at different concentrations, contact times, reaction temperatures, adsorbent dosage, coexisting anions and pH of the solution. The rate constants of adsorption, intraparticle transport, mass transfer coefficients and thermodynamic parameters have been calculated at 303 K, 313 K and 323 K. The empirical model has been tested at various concentrations for the present system. The removal of fluoride is favourable at low concentration (5 ppm), high temperature (313 K) and under highly acidic conditions. The batch adsorption process fitted well the Langmuir isotherm and the adsorption kinetics followed the pseudo-second-order rate equation. The physicochemical properties of fly ash were characterized by X-ray diffraction, Fourier Transform infrared spectroscopy and scanning electron microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a1 :

Elovich constant which gives an idea of the reaction rate constant (mg/g/min)

b:

Langmuir constant (L/mg)

b1 :

Elovich constant and represents the rate of chemisorption at zero coverage (g/mg)

bT :

Temkin constant

C:

Intra-particle diffusion constant

Ca :

Amount of F (mg) adsorbed on the adsorbent per liter of the solution at equilibrium

Cabs :

Amount of F ion adsorbed onto sorbent surface (mol/g)

Ce :

F ion concentration in solution at equilibrium (mg/L)

C0 :

Initial F ion concentration (mg/L)

Ct :

F ion concentration at time t (mg/L)

De :

Effective diffusion coefficient of adsorbates in the sorbent phase (m2/s)

E:

Mean sorption energy (kJ/mol)

ΔG°:

Gibbs free energy (kJ/mol)

ΔH°:

Enthalpy (kJ/mol)

K1 :

Pseudo first-order rate constant (min−1)

K2 :

Pseudo second-order rate constant (mg/g/min)

Ki :

Intra-particle rate constant (mg/g/min1/2)

Kbq :

The constant obtained by multiplying qmax and b

Ko c :

Thermodynamic equilibrium constant

\( {\mathrm{K}}_{\mathrm{c}}^{/} \) :

Apparent equilibrium constant

KT :

Temkin isotherm constant

M:

Mass of the sorbent per unit volume (g/L)

Kf :

Freundlich constants, intensity of sorption (mg/g)/(mg/L)1/n

n:

An integer

qe :

Amount adsorbed per gram of the sorbent at equilibrium (mg/g)

qmax :

Maximum sorption capacity (mg/g)

qt :

Amount adsorbed per gram of sorbent at any time t (mg/g)

qα :

Amount adsorbed per gram of sorbent at infinite time (mg/g)

qtm :

Amount adsorbed per gram of adsorbent from model (mg/g)

r2 :

Correlation coefficient

R:

Ideal gas constant (J/mole/K)

RL :

Separation factor

Ra :

Radius of the sorbent particle (m)

SS :

External surface area of the sorbent per unit volume (m−1)

ΔS°:

Entropy [kJ/(mole K)]

t:

Time (min)

T:

Temperature (K)

t0 :

Elovich constant equals to 1/(a1·b1)

V:

Volume (mL)

W:

Amount of sorbent (g)

Xm :

Maximum sorption capacity of sorbent (mmole/g)

β:

Mass transfer coefficient (cm/s)

λ:

Constant related to sorption energy (mol2/kJ2)

ε:

Polanyi potential (kJ2/mol2)

χ2 :

Chi-square value

\( {\chi}^2=\sum \frac{{\left({q}_t-{q}_{tm}\right)}^2}{q_{tm}} \)

References

  1. Abe I, Iwasaki S, Tokimoto T, Kawasaki N (2004) Adsorption of fluoride ions onto carbonaceous materials. J Colloid Interf Sci 275:35–39

    Article  CAS  Google Scholar 

  2. Banks D, Reimann C, Røyset O, Skarphagen H (1995) Natural concentrations of major and trace elements in some Norwegian bedrock ground waters. Appl Geochem 10:1–16

    Article  CAS  Google Scholar 

  3. Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking water. WHO, IWA Publishing, London. ISBN 92-4156319-2

    Google Scholar 

  4. Biswas K, Gupta K, Goswami A, Ghosh UC (2007) Fluoride removal efficiency from aqueous solution by synthetic iron(III)-aluminum(III) mixed oxide. Ind Eng Chem Res 46:5346

    Article  CAS  Google Scholar 

  5. Singh R, Maheshwari RC (2001) Defluoridation of drinking water–a review. Ind J Environ Prot 21:983–991

    CAS  Google Scholar 

  6. UNICEF (2005) Unicef’s position on water fluoridation; online database. www.unicef.org

  7. Gaciri SJ, Davies TC (1993) The occurrence and geochemistry of fluoride in some natural waters of Kenya. J Hydrol 143:395–412

    Article  CAS  Google Scholar 

  8. Czarnowski W, Wrześniowska K, Krechniak J (1996) Fluoride in drinking water and human urine in northern and central Poland. Sci Total Environ 191:177–184

    Article  CAS  Google Scholar 

  9. Azbar N, Turkman A (2000) Defluorination in drinking waters. Water Sci Technol 42:403–407

    CAS  Google Scholar 

  10. Agarwal M, Rai K, Shrivastav R, Dass S (2003) Defluoridation of water using amended clay. J Clean Prod 11:439–444

    Article  Google Scholar 

  11. Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36:433–487

    Article  CAS  Google Scholar 

  12. Wang LFM, Huang JZ (1995) Outline of control practice of endemic fluorosis in China. Social Sci Med 411:1191–1195

    Google Scholar 

  13. Mjengera H, Mkongo G (2003) Appropriate defluoridation technology for use in fluorotic areas in Tanzania. Phys Chem Earth 28:1097–1104

    Article  Google Scholar 

  14. Ortiz-Pérez D, Rodríguez-Martínez M, Martínez F (1997) Endemic fluorosis in Mexico. Fluoride 30:233–239

    Google Scholar 

  15. Kruse E, Ainchil J (2003) Fluoride variations in groundwater of an area in Buenos Aires province, Argentina. Environ Geol 44:86–89

    CAS  Google Scholar 

  16. WRC (2001) Distribution of fluoride-rich groundwater in eastern and Mogwase region of northern and north-west province. WRC Report No. 526/1/01 1.1-9.85

    Google Scholar 

  17. Saxena KL, Sewak R (2015) Fluoride consumption in endemic villages of India and its remedial measures. Int J Eng Sci Invent 4:58–73

    Google Scholar 

  18. Bhattacharya J, Mandal SN (2014) Effect of nitrate, sulphate and fluoride of wastewater and groundwater. Res J Chem Environ 18:50–56

    Google Scholar 

  19. Mahramanlioglu M, Kizilcikli I, Bicer IO (2002) Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J Fluorine Chem 115:41–47

    Article  CAS  Google Scholar 

  20. Chinoy NJ (1991) Effects of fluoride on physiology of animals and human beings. Indian J Environ Toxicol 1:17–32

    Google Scholar 

  21. Harrison PTC (2005) Fluoride in water: a UK perspective. J Fluorine Chem 126:1448–1456

    Article  CAS  Google Scholar 

  22. Fan X, Parker DJ, Smith MD (2003) Adsorption kinetics of fluoride on low cost materials. Water Res 37:4929–4937

    Article  CAS  Google Scholar 

  23. Zhou Y, Yu C, Shan Y (2004) Adsorption of fluoride from aqueous solution on La3+ impregnated crosslinked gelatin. Sep Purif Technol 36:89–94

    Article  CAS  Google Scholar 

  24. Islam M, Patel RK (2011) Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency. Chem Eng J 169:68–77

    Article  CAS  Google Scholar 

  25. Online database: http://www.fluoridealert.org/health/

  26. WHO (2004) Guidelines for drinking water quality, Geneva

    Google Scholar 

  27. Shen F, Chen X, Gao P, Chen G (2003) Electrochemical removal of fluoride ions from industrial wastewater. Chem Eng Sci 58:987–993

    Article  CAS  Google Scholar 

  28. Mohapatra M, Anand S, Mishra BK, Giles DE (2009) Review of fluoride removal from drinking water. J Environ Manage 91:67–77

    Article  CAS  Google Scholar 

  29. Miretzky P, Cirelli AF (2001) Fluoride removal from water by chitosan derivatives and composites: a review. J Fluorine Chem 132:231–240

    Article  Google Scholar 

  30. Ayoob S, Gupta AK, Bhat VT (2008) A conceptual overview on sustainable technologies for defluoridation of drinking water and removal mechanisms. Crit Rev Environ Sci Technol 38:401–470

    Article  CAS  Google Scholar 

  31. James RO, Healy TW (1972) Adsorption of hydrolysable metal ions at the oxide water interface. III. A thermodynamic model of adsorption. J Colloid Interf Sci 40:65–81

    Article  CAS  Google Scholar 

  32. Panday et al (1983) Removal of metal ions from water and wastewater. Nat Acad Sci Lett 6:415–418

    CAS  Google Scholar 

  33. Chaturvedi AK, Pathak KC, Singh VN (1988) Fluoride removal from water by adsorption on china clay. Appl Clay Sci 3:337–346

    Article  CAS  Google Scholar 

  34. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  35. Ho YS, McKay G (2000) Study of the sorption of divalent metal onto peat. Adsorp Sci Technol 18:639–650

    Article  CAS  Google Scholar 

  36. Teng H, Hsieh CT (1999) Activation energy for oxygen chemisorption on carbon at low temperature. Ind Eng Chem Res 38:292–297

    Article  CAS  Google Scholar 

  37. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Google Scholar 

  38. McKay G, Otterburn MS, Sweeney AG (1981) Surface mass transfer processes during colour removal from effluent using silica. Water Res 15:327–331

    Article  CAS  Google Scholar 

  39. Low MJD (1960) Kinetics of chemisorption of gases on solids. Chem Rev 60:267–312

    Article  CAS  Google Scholar 

  40. Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper(II) onto peat. Adsorp Sci Technol 20:797–815

    Article  CAS  Google Scholar 

  41. Reyes RBG, Mendez JRR (2010) Adsorption kinetics of chromium(III) ions on agrowaste materials. Bioresour Technol 101:8099–8108

    Article  Google Scholar 

  42. Zaki AB, El-Sheikh MY, Evans J, El-Safty SA (2000) The sorption of some aromatic amines onto amberlite IRA-904 anion-exchange resin. J Colloid Interf Sci 221:58–63

    Article  CAS  Google Scholar 

  43. Kalavathy MH, Karthikeyan T, Rajgopal S, Miranda LR (2005) Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. J Colloid Interf Sci 292:354–362

    Article  CAS  Google Scholar 

  44. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1368

    Article  CAS  Google Scholar 

  45. Freundlich H (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368

    Google Scholar 

  46. Temkin MJ, Pyzhev V (1940) Recent modifications of Langmuir isotherms. Acta Physiochim URSS 12:217–222

    Google Scholar 

  47. Dubinin MM, Zaverina ED, Radushkevich LV (1947) Sorption and structure of active carbons. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii 21:1351–1362

    CAS  Google Scholar 

  48. Polanyi M (1932) Theories of the adsorption of gases. A general survey and some additional remarks. Trans Faraday Soc 28:316–333

    Article  CAS  Google Scholar 

  49. Naiya TK, Bhattacharya AK, Mandal S, Das SK (2009) The sorption of lead(II) ions on rice husk ash. J Hazard Mater 163:1254–1264

    Article  CAS  Google Scholar 

  50. Webi TW, Chakravorty RK (1974) Ore and solid diffusion models for fixed bed adsorbers. AIChE J 20:228–238

    Article  Google Scholar 

  51. Dakiky M, Khamis M, Manassra A, Mereb M (2002) Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res 6:533–540

    Article  CAS  Google Scholar 

  52. Malkoc E, Nuhoglu Y (2007) Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(VI) onto waste acorn of Quercus ithaburensis. Chem Eng Process 46:1020–1029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Maitra Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Chakraborty, G.M., Das, S.K., Mandal, S.N. (2018). Removal of Fluoride from Ground Water by Adsorption Using Industrial Solid Waste (Fly Ash). In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Emerging Trends in Chemical Sciences. ICPAC 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-60408-4_6

Download citation

Publish with us

Policies and ethics