Skip to main content

Processability Issue in Inverted Organic Solar Cells

  • Conference paper
  • First Online:
Book cover Emerging Trends in Chemical Sciences (ICPAC 2016)

Included in the following conference series:

Abstract

Though impressive progress on the power conversion efficiency of organic solar cells (OSCs) has been made, their practical use is still hampered due to their inherent poor stability. Under ambient conditions the long term stability of non-encapsulated organic solar cells with conventional device architecture is lower than the technical lifetime of devices with an inverted configuration. The removal of the interface between the ITO (indium tin oxide) layer and the acidic PEDOT:PSS layer along with the substitution of a low work function metal electrode with a high work function metal electrode in the inverted device configuration renders relatively higher stability in these devices. Though encouraging device performance (with respect to both stability and efficiency) is seen in inverted organic solar cells, there exists a few technical challenges in the fabrication of these devices namely (1) processability; (2) light-soaking and (3) stability. In this short review we will focus on tackling the processability issue of the device fabrication. Firstly, an overview of recent developments of inverted organic solar cells (IOSC) using various photoactive layers and charge transport layers will be presented. Secondly, the inferior wettability of the hydrophilic PEDOT:PSS hole transport layer onto the photoactive layer such as the P3HT:PCBM blend, which is hydrophobic in nature will be discussed. Thirdly, we will summarize how this issue was addressed successfully and finally, a brief conclusion and an outlook for solution-processed inverted organic solar cells will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Institute for Energy Research (2015) Fossil fuels

    Google Scholar 

  2. Enerdata (2016) Global energy statistical yearbook 2016

    Google Scholar 

  3. International Renewable Energy Agency (2015) Power generation summary charts

    Google Scholar 

  4. Greentech Media (2015) Global PV demand outlook 2015-2020: exploring risk in downstream solar markets – GTM research

    Google Scholar 

  5. Greentech Media (2015) 8 Solar trends to follow in 2015

    Google Scholar 

  6. Green MA, Emery K, Hishikawa Y et al (2017) Solar cell efficiency tables (version 49). Prog Photovolt 25:3–13

    Article  Google Scholar 

  7. Ranjan S, Balaji S, Panella RA et al (2011) Silicon solar cell production. Comput Chem Eng 35:1439–1453

    Article  CAS  Google Scholar 

  8. Chamberlain GA (1983) Organic solar cells: a review. Sol Cells 8:47–83

    Article  CAS  Google Scholar 

  9. Benanti T, Venkataraman D (2006) Organic solar cells: an overview focusing on active layer morphology. Photosynth Res 87:73–81

    Article  CAS  Google Scholar 

  10. Wöhrle D, Meissner D (1991) Organic solar cells. Adv Mater 3:129–138

    Article  Google Scholar 

  11. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Article  CAS  Google Scholar 

  12. Halls JJM, Walsh CA, Greenham NC et al (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500

    Article  CAS  Google Scholar 

  13. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1790

    Article  CAS  Google Scholar 

  14. Nian L, Gao K, Liu F et al (2016) 11% efficient ternary organic solar cells with high composition tolerance via integrated near-IR sensitization and interface engineering. Adv Mater 28:8184–8190

    Article  CAS  Google Scholar 

  15. Heliatek (2015) Unique – HeliaFilm® perfectly combines design and functionality

    Google Scholar 

  16. You J, Dou L, Yoshimura K et al (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:1446

    Article  Google Scholar 

  17. Guo S, Brandt C, Andreev T et al (2014) First step into space: performance and morphological evolution of P3HT:PCBM bulk heterojunction solar cells under AM 0 illumination. ACS Appl Mater Interfaces 6:17902–17910

    Article  CAS  Google Scholar 

  18. Søndergaard RR, Hösel M, Krebs FC (2013) Roll-to-roll fabrication of large area functional organic materials. J Polym Sci Polym Phys 51:16–34

    Article  Google Scholar 

  19. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Science 6:153–161

    CAS  Google Scholar 

  20. Liu Y, Zhao J, Li Z et al (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Commun 6293:5293

    Article  Google Scholar 

  21. National Center for Photovoltaic Research (2015) Best research-cells efficiencies. National Renewable Energy Laboratory (NREL)

    Google Scholar 

  22. Zhao J, Li Y, Yang G et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027

    Article  CAS  Google Scholar 

  23. Heliatek (2016) Heliatek sets new organic photovoltaic world record efficiency of 13.2%. Available at: http://www.heliatek.com/en/press/press-releases/details/heliatek-sets-new-organic-photovoltaic-world-record-efficiency-of-13-2

  24. Sono-Tek Corporation (2015) www.sono-tek.com/

  25. Solarmer (2015) www.solarmer.com/

  26. Belectric (2015) www.belectric.com/

  27. Sista S, Hong Z, Chen LM et al (2011) Tandem polymer photovoltaic cells – current status, challenges and future outlook. Energ Environ Sci 4:1606–1620

    Article  CAS  Google Scholar 

  28. Søndergaard R, Hösel M, Angmo D et al (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15:36–49

    Article  Google Scholar 

  29. Voigt MM, MacKenzie RCI, Yau CP et al (2011) Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates. Sol Energ Mat Sol C 95:731–734

    Article  CAS  Google Scholar 

  30. Espinosa N, García-Valverde R, Urbina A et al (2012) Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing. Sol Energ Mat Sol C 97:3–13

    Article  CAS  Google Scholar 

  31. Kawano K, Pacios R, Poplavskyy D et al (2006) Degradation of organic solar cells due to air exposure. Sol Energ Mat Sol C 90:3520–3530

    Article  CAS  Google Scholar 

  32. Kim H, Nam S, Lee H et al (2011) Influence of controlled acidity of hole-collecting buffer layers on the performance and lifetime of polymer: fullerene solar cells. J Phys Chem C 115:13502–13510

    Article  CAS  Google Scholar 

  33. Gaynor W, Lee J-Y, Peumans P (2009) Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 4:30–34

    Article  Google Scholar 

  34. Ahmad J, Bazaka K, Anderson LJ et al (2013) Materials and methods for encapsulation of OPV: a review. Renew Sustain Energy Rev 27:104–117

    Article  CAS  Google Scholar 

  35. Hau SK, Yip H-L, Baek NS et al (2008) Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett 92:253301–253303

    Article  Google Scholar 

  36. White MS, Olson DC, Shaheen SE et al (2006) Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl Phys Lett 89:143517

    Article  Google Scholar 

  37. Lim FJ, Krishnamoorthy A, Luther J et al (2012) Influence of novel fluorosurfactant modified PEDOT:PSS hole transport layer on the performance of inverted organic solar cells. J Mater Chem 22:25057–25064

    Article  CAS  Google Scholar 

  38. He Z, Zhong C, Su S et al (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:593–597

    Article  CAS  Google Scholar 

  39. Lampande R, Kim GW, Boizot J et al (2013) A highly efficient transition metal oxide layer for hole extraction and transport in inverted polymer bulk heterojunction solar cells. J Mater Chem A 1:6895–6900

    Article  CAS  Google Scholar 

  40. Liao S-H, Jhuo H-J, Cheng Y-S et al (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-band gap polymer (PTB7-Th) for high performance. Adv Mater 25:4766–4771

    Article  CAS  Google Scholar 

  41. Wang G, Jiu T, Tang G et al (2014) Interface modification of ZnO-based inverted PTB7:PC71BM organic solar cells by cesium stearate and simultaneous enhancement of device parameters. ACS Sustain Chem Eng 2:1331–1337

    Article  Google Scholar 

  42. Vohra V, Kawashima K, Kakara T et al (2015) Efficient inverted polymer solar cells employing favourable molecular orientation. Nat Photonics 9:403–408

    Article  CAS  Google Scholar 

  43. Juang T-Y, Hsu Y-C, Jiang B-H et al (2016) Highly efficient inverted organic photovoltaics containing aliphatic hyperbranched polymers as cathode modified layers. Macromolecules 49:7837–7843

    Article  CAS  Google Scholar 

  44. Zhou JC, Zhang G, Zhong C et al (2017) Toward high efficiency polymer solar cells: influence of local chemical environment and morphology. Adv Energ Mater 7:1601081

    Article  Google Scholar 

  45. Kanwat A, Jang J (2014) Extremely stable organic photovoltaic incorporated with WOx doped PEDOT:PSS anode buffer layer. J Mater Chem C 2:901–907

    Article  CAS  Google Scholar 

  46. Lim FJ, Set YT, Krishnamoorthy A et al (2015) Addressing the light-soaking issue in inverted organic solar cells using chemical bath deposited fluorinated TiOx electron transport layer. J Mater Chem A 3:314–322

    Article  CAS  Google Scholar 

  47. Lim FJ, Krishnamoorthy A, Ho GW (2015) Device stability and light-soaking characteristics of high-efficiency benzodithiophene–thienothiophene copolymer-based inverted organic solar cells with F-TiOx electron-transport layer. ACS Appl Mater Interfaces 7:12119–12127

    Article  CAS  Google Scholar 

  48. Lim FJ, Krishnamoorthy A, Ho GW (2016) All-in-one solar cell: stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells. Sol Energ Mat Sol C 150:19–31

    Article  CAS  Google Scholar 

  49. Lima FS, Beliatis MJ, Roth B et al (2016) Flexible ITO-free organic solar cells applying aqueous solution-processed V2O5 hole transport layer: an outdoor stability study. APL Mater 4:026104

    Article  Google Scholar 

  50. Li X, Choy WCH, Huo L et al (2012) Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater 24:3046–3052

    Article  CAS  Google Scholar 

  51. Peters CH, Sachs-Quitana IT, Kastrop JP et al (2011) High efficiency polymer solar cells with long operating lifetimes. Adv Energy Mater 1:491–494

    Article  CAS  Google Scholar 

  52. Park H-Y, Lim D, Kim K-D et al (2013) Performance optimization of low-temperature-annealed solution-processable ZnO buffer layers for inverted polymer solar cells. J Mater Chem A 1:6327–6334

    Article  CAS  Google Scholar 

  53. Norrman K, Madsen MV, Gevorgyan SA et al (2010) Degradation patterns in water and oxygen of an inverted polymer solar cell. J Am Chem Soc 132:16883–16892

    Article  CAS  Google Scholar 

  54. Ou K-L, Tadytin D, Steirer KX et al (2013) Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells. J Mater Chem A 1:6794–6803

    Article  CAS  Google Scholar 

  55. Trost S, Becker T, Polywka A et al (2016) Avoiding photoinduced shunts in organic solar cells by the use of tin oxide (SnOx) as electron extraction material instead of ZnO. Adv Energy Mater 6:1600347–1600355

    Article  Google Scholar 

  56. Liao H-H, Chen L-M, Xu Z et al (2008) Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Appl Phys Lett 92:173303

    Article  Google Scholar 

  57. Lee YI, Youn JH, Ryu MS et al (2011) Electrical properties of inverted poly (3-hexylthiophene): Methano-fullerene [6,6]-phenyl C71-butyric acid methyl ester bulk hetero-junction solar cell with Cs2CO3 and MoO3 layers. Sol Energy Mater Sol Cells 95:3276–3280

    Article  CAS  Google Scholar 

  58. Sun H, Weickert J, Hesse HC et al (2011) UV light protection through TiO2 blocking layers for inverted organic solar cells. Sol Energy Mater Sol Cells 95:3450–3454

    Article  CAS  Google Scholar 

  59. Ouyang J (2013) Secondary doping methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 34:423–436

    Article  CAS  Google Scholar 

  60. Stenta C (2013) Study and characterization of ZnPc:C60/MoOx interface in organic solar cells by means of photoelectron spectroscopy. Universidade Nova de Lisboa, Portugal, p 73

    Google Scholar 

  61. Wahl T, Zellmer S, Hanisch J et al (2016) Thin indium tin oxide nanoparticle films as hole transport layer in inverted organic solar cells. Thin Solid Films 616:419–424

    Article  CAS  Google Scholar 

  62. Glatthaar M, Niggemann M, Zimmermann B et al (2005) Organic solar cells using inverted layer sequence. Thin Solid Films 491:298–300

    Article  CAS  Google Scholar 

  63. Baek WH, Choi M, Yoon TS et al (2010) Use of fluorine-doped tin oxide instead of indium tin oxide in highly efficient air-fabricated inverted polymer solar cells. Appl Phys Lett 96:133506

    Article  Google Scholar 

  64. Boix PP, Ajuria J, Pacios R et al (2011) Carrier recombination losses in inverted polymer: fullerene solar cells with ZnO hole-blocking layer from transient photovoltage and impedance spectroscopy techniques. J Appl Phys 109:074514

    Article  Google Scholar 

  65. Chen C-P, Chen Y-D, Chuang S-C (2011) High-performance and highly durable inverted organic photovoltaics embedding solution-processable vanadium oxides as an interfacial hole-transporting layer. Adv Mater 23:3859–3863

    CAS  Google Scholar 

  66. Stubhan T, Oh H, Pinna L et al (2011) Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer. Org Electron 12:1539–1543

    Article  CAS  Google Scholar 

  67. Heo SW, Baek KH, Lee TH et al (2013) Enhanced performance in inverted polymer solar cells via solution process: morphology controlling of PEDOT:PSS as anode buffer layer by adding surfactants. Org Electron 14:1629–1635

    Article  CAS  Google Scholar 

  68. Xiangdong W, Qing P, Weiguo Z et al (2015) High performance of inverted polymer solar cells with cobalt oxide as hole-transporting layer. Semicond Sci Technol 30:055001

    Article  Google Scholar 

  69. Brabec CJ, Dyakonov V, Scherf U (2008) Organic photovoltaics: materials, device physics, and manufacturing technologies. Wiley-VCH, Weinheim, p 575

    Book  Google Scholar 

  70. Servaites JD, Ratner MA, Marks TJ (2011) Organic solar cells: a new look at traditional models. Energ Environ Sci 4:4410–4422

    Article  CAS  Google Scholar 

  71. Fan B, Xia Y, Ouyang J (2009) Novel ways to significantly enhance the conductivity of transparent PEDOT: PSS. Proc SPIE 7415:74151Q

    Article  Google Scholar 

  72. Lipomi DJ, Tee BCK, Vosgueritchian M et al (2011) Stretchable organic solar cells. Adv Mater 23:1771–1775

    Article  CAS  Google Scholar 

  73. Mason Chemical Company (2007) Fluorosurfactant – structure and function. Available at: http://www.masonsurfactants.com/Products/Fluorosurfactant.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. J. Lim or A. Krishnamoorthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Lim, F.J., Krishnamoorthy, A. (2018). Processability Issue in Inverted Organic Solar Cells. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Emerging Trends in Chemical Sciences. ICPAC 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-60408-4_24

Download citation

Publish with us

Policies and ethics