Skip to main content

Recent Applications of Laccase Modified Membranes in the Removal of Bisphenol A and Other Organic Pollutants

  • Conference paper
  • First Online:
Book cover Emerging Trends in Chemical Sciences (ICPAC 2016)

Abstract

Bisphenol A (BPA) has been found to be the most rapidly generated endocrine disrupting compound (EDC) with an annual production of over 10 million tons. This synthetic compound has been used extensively in the production of polycarbonate plastics, epoxy resins and thermal papers. It has been detected at elevated levels in industrial wastewater effluents, natural waters and drinking water. Recent studies have shown that BPA affects the proper functioning of the endocrine system in human beings and animals. Exposure to BPA has been associated with immunotoxic, mutagenic and carcinogenic effects at very low levels (ng/L to μg/L). It has also been proven that BPA increases chances of having diabetes, obesity and cancer. Thus, the removal of BPA from water has become a major concern in water research. Enzymatic degradation of BPA has proven to be an efficient and environmentally friendly approach and the use of laccase modified membranes has been reported in many studies. This article provides an in-depth review on the removal of BPA and other toxic organic micro-contaminants from water by laccase modified membrane systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalowicz J (2014) Bisphenol A—sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37:738–758

    Article  CAS  Google Scholar 

  2. Annamalai J, Namasivayam V (2015) Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environ Int 76:78–97

    Article  CAS  Google Scholar 

  3. Giulivo M, Lopez De Alda M, Capri E, Barceló D (2016) Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ Res 151:251–264

    Article  CAS  Google Scholar 

  4. Umar M, Roddick F, Fan L, Aziz AZ (2013) Application of ozone for the removal of bisphenol A from water and wastewater—a review. Chemosphere 90:2197–2207

    Article  CAS  Google Scholar 

  5. Gassara F, Brar SK, Verma M, Tyagi RD (2013) Bisphenol A degradation in water by ligninolytic enzymes. Chemosphere 92:1356–1360

    Article  CAS  Google Scholar 

  6. Lin J, Liu Y, Chen S, Le X, Zhou X, Zhao Z, Ou Y, Yang J (2016) Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. Int J Biol Macromol 84:189–199

    Article  CAS  Google Scholar 

  7. Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132–155

    Article  CAS  Google Scholar 

  8. Yang Q, Gao M, Luo Z, Yang S (2016) Enhanced removal of bisphenol A from aqueous solution by organo-montmorillonites modified with novel Gemini pyridinium surfactants containing long alkyl chain. Chem Eng J 285:27–38

    Article  CAS  Google Scholar 

  9. Dehghani MH, Ghadermazi M, Bhatnagar A, Sadighara P, Jahed-Khaniki G, Heibati B, McKay G (2016) Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. J Environ Chem Eng 4:2647–2655

    Article  CAS  Google Scholar 

  10. Huang Q, Weber WJ (2005) Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: efficacy, products, and pathways. Environ Sci Technol 39:6029–6036

    Article  CAS  Google Scholar 

  11. Huang YQ, Wong CK, Zheng JS, Bouwman H, Barra R, Wahlstrom B, Neretin L, Wong MH (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99

    Article  CAS  Google Scholar 

  12. Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage 104:19–34

    Article  CAS  Google Scholar 

  13. Hoekstra EJ, Simoneau C (2013) Release of bisphenol A from polycarbonate: a review. Crit Rev Food Sci Nutr 53:386–402

    Article  CAS  Google Scholar 

  14. Pouokam GB, Ajaezi GC, Mantovani A, Orisakwe OE, Frazzoli C (2014) Use of bisphenol A-containing baby bottles in Cameroon and Nigeria and possible risk management and mitigation measures: Community as milestone for prevention. Sci Total Environ 481:296–302

    Article  CAS  Google Scholar 

  15. Zhou Y, Chen L, Lu P, Tang X, Lu J (2011) Removal of bisphenol A from aqueous solution using modified fibric peat as a novel biosorbent. Sep Purif Technol 81:184–190

    Article  CAS  Google Scholar 

  16. Maduka IC, Ezeonu FE, Neboh EE, Shu EN, Ikekpeazu EJ (2010) BPA and environmental estrogen in potable water sources in Enugu municipality, south-east, Nigeria. Bull Environ Contam Toxicol 85:534–537

    Article  Google Scholar 

  17. Omoruyi MI, Ahamioje D, Pohjanvirta R (2014) Dietary exposure of Nigerians to mutagens and estrogen-like chemicals. Int J Environ Res Public Health 11:8347–8367

    Article  Google Scholar 

  18. Olujimi OO, Fatoki OS, Daso AP, Akinsoji OS, Oputu OU, Oluwafemi OS, Songca SP (2013) Levels of nonylphenol and bisphenol A in wastewater treatment plant effluent, sewage sludge and leachates around Cape Town, South Africa. In: Valdez CJ, Maradona EM (eds) Handbook of wastewater treatment. CRC Press, Boca Raton, pp 305–316

    Google Scholar 

  19. SANS 214 (2006) (Ed. 6). www.alabbott.co.za/docs/2985_SANS-241_spec.pdf. Accessed 6 Feb 2017

  20. De Jager C, Swart P, Truebody B (2013) Estrogenic activity and endocrine disrupting chemical (EDC) status in water obtained from selected distribution points in Pretoria and Cape Town. WRC report no. KV 317/13

    Google Scholar 

  21. Baluka SA, Rumbeiha WK (2016) Bisphenol A and food safety: lessons from developed to developing countries. Food Chem Toxicol 92:58–63

    Article  CAS  Google Scholar 

  22. Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24:178–198

    Article  CAS  Google Scholar 

  23. Meeker JD, Calafat AM, Hauser R (2010) Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ Sci Technol 44:1458–1463

    Article  CAS  Google Scholar 

  24. Doherty LF, Bromer JB, Zhou Y, Aldad TS, Taylor HS (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1:146–155

    Article  CAS  Google Scholar 

  25. Escalona I, de Grooth J, Font J, Nijmeijer K (2014) Removal of BPA by enzyme polymerization using NF membranes. J Memb Sci 468:192–201

    Article  CAS  Google Scholar 

  26. Vom Saal FS et al (2007) Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24:131–138

    Article  CAS  Google Scholar 

  27. Park Y, Sun Z, Ayoko GA, Frost RL (2014) Bisphenol A sorption by organo-montmorillonite: implications for the removal of organic contaminants from water. Chemosphere 107:249–256

    Article  CAS  Google Scholar 

  28. Erjavec B, Hudoklin P, Perc K, Tisler T, Dolenc MS, Pintar A (2016) Glass fiber-supported TiO2 photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs. Appl Catal B Environ 183:149–158

    Article  CAS  Google Scholar 

  29. Tsai WT, Hsu HC, Su TY, Lin KY, Lin CM (2006) Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite. J Colloid Interface Sci 299:513–519

    Article  CAS  Google Scholar 

  30. Rathnayake SI, Xi Y, Frost RL, Ayoko GA (2016) Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: bisphenol A. J Colloid Interface Sci 470:183–195

    Article  CAS  Google Scholar 

  31. Katsigiannis A, Noutsopoulos C, Mantziaras J, Gioldasi M (2015) Removal of emerging pollutants through granular activated carbon. Chem Eng J 280:49–57

    Article  CAS  Google Scholar 

  32. Gong S, Li S, Ma J, Zhang X (2016) Synthesis of recyclable powdered activated carbon with temperature responsive polymer for bisphenol A removal. Sep Purif Technol 157:131–140

    Article  CAS  Google Scholar 

  33. Park Y, Ayoko GA, Frost RL (2011) Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. J Colloid Interface Sci 354:92–305

    Article  Google Scholar 

  34. Jiuhui QU (2008) Research progress of novel adsorption processes in water purification: a review. J Environ Sci 20:1–13

    Article  CAS  Google Scholar 

  35. Dai Y, Yao J, Song Y, Wang S, Yuan Y (2016) Enhanced adsorption and degradation of phenolic pollutants in water by carbon nanotube modified laccase-carrying electrospun fibrous membranes. Environ Sci Nano 3:857–868

    Article  CAS  Google Scholar 

  36. Yuksel S, Kabay N, Yuksel M (2013) Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. J Hazard Mater 263:307–310

    Article  CAS  Google Scholar 

  37. Wu H, Niu X, Yang J, Wang C, Lu M (2016) Retentions of bisphenol A and norfloxacin by three different ultrafiltration membranes in regard to drinking water treatment. Chem Eng J 294:410–416

    Article  CAS  Google Scholar 

  38. Heo J, Flora JR, Her N, Park YG, Cho J, Son A, Yoon Y (2012) Removal of bisphenol A and 17β-estradiol in single walled carbon nanotubes-ultrafiltration (SWNTs-UF) membrane systems. Sep Purif Technol 90:39–45

    Article  CAS  Google Scholar 

  39. Escalona I, Fortuny A, Stuber F, Bengoa C, Fabregat A, Font J (2014) Fenton coupled with nanofiltration for elimination of bisphenol A. Desalination 345:77–84

    Article  CAS  Google Scholar 

  40. Gmurek M, Olak-Kucharczyk M, Ledakowicz S (2016) Photochemical decomposition of endocrine disrupting compounds—a review. Chem Eng J 310:437–456

    Article  Google Scholar 

  41. Keykavoos R, Mankidy R, Ma H, Jones H, Soltan J (2013) Mineralization of bisphenol A by catalytic ozonation over alumina. Sep Purif Technol 107:310–317

    Article  CAS  Google Scholar 

  42. Sharma J, Mishra IM, Kumar V (2015) Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8 2- oxidation systems. J Environ Manage 156:266–275

    Article  CAS  Google Scholar 

  43. Wu W, Shan G, Wang S, Zhu L, Yue L, Xiang Q (2016) Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation. Environ Pollut 216:166–172

    Article  CAS  Google Scholar 

  44. Zhao J, Li Y, Zhang C, Zeng Q, Zhou Q (2008) Sorption and degradation of bisphenol A by aerobic activated sludge. J Hazard Mater 155:305–311

    Article  CAS  Google Scholar 

  45. Ferro Orozco AM, Lobo CC, Contreras EM, Zaritzky NE (2013) Biodegradation of bisphenol-A (BPA) in activated sludge batch reactors: Analysis of the acclimation process. Int Biodeterior Biodegrad 85:392–399

    Article  CAS  Google Scholar 

  46. Hirano T, Honda Y, Watanabe T, Kuwahara M (2000) Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem 64:1958–1962

    Article  CAS  Google Scholar 

  47. Taboada-Puig R, Eibes G, Lloret L, Lu-Chau TA, Feijoo G, Moreira MT, Lema JM (2016) Fostering the action of versatile peroxidase as a highly efficient biocatalyst for the removal of endocrine disrupting compounds. N Biotechnol 33:187–195

    Article  CAS  Google Scholar 

  48. Daâssi D, Prieto A, Zouari-Mechichi H, Martínez MJ, Nasri M, Mechichi T (2016) Degradation of bisphenol A by different fungal laccases and identification of its degradation products. Int Biodeterior Biodegrad 110:181–188

    Article  Google Scholar 

  49. Lloret L, Eibes G, Feijoo G, Moreira MT, Lema JM (2012) Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. J Hazard Mater 213–214:175–183

    Article  Google Scholar 

  50. Wang H, Zhang W, Zhao J, Xu L, Zhou C, Chang L, Wang L (2013) Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support. Ind Eng Chem Res 52:4401–4407

    Article  CAS  Google Scholar 

  51. Georgieva S, Godjevargova T, Mita DG, Diano N, Menale C, Nicolucci C (2010) Enzymatic Non-isothermal bioremediation of waters polluted by phenol and some of its derivatives by laccase covalently immobilized on polypropylene membranes. J Mol Catal B Enzym 91:210–218

    Article  Google Scholar 

  52. Diano N, Grano V, Fraconte L, Caputo P, Ricupito A (2007) Non-isothermal bioreactors in enzymatic remediation of waters polluted by endocrine disruptors: BPA as a model of pollutant. Appl Catal B Environ 69:52–261

    Article  Google Scholar 

  53. Zhu W, Zhang Y, Hou C, Pan D, He J, Zhu H (2016) Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer. J Nanoparticle Res 18:1–13

    Article  CAS  Google Scholar 

  54. Jochems P, Satyawali Y, Dejonghe W (2011) Green chemistry enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem 13:1609–1623

    Article  CAS  Google Scholar 

  55. Srbová J, Slováková M, Křípalová Z, Žárská M, Špačková M, Stránská D, Bílková Z (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44

    Article  Google Scholar 

  56. Jolivalt C, Brenon S, Caminade E, Mougin C, Pontié M (2000) Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: Characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J Memb Sci 180:103–113

    Article  CAS  Google Scholar 

  57. Wang ZG, Wan LS, Liu ZM, Huang XJ, Xu ZK (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56:189–195

    Article  CAS  Google Scholar 

  58. Sulaiman S, Mokhtar MNA (2015) Review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175:1817–1842

    Article  CAS  Google Scholar 

  59. Gao Y, Truong Y, Cacioli Y, Butler P, Kyratzis L (2014) Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles. Enzyme Microb Technol 54:38–44

    Article  CAS  Google Scholar 

  60. Mugdha A, Usha M (2012) Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Sci Rev Chem Commun 2:31–40

    Google Scholar 

  61. Fernando Bautista L, Morales G, Sanz R (2010) Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene. Bioresour Technol 101:8541–8548

    Article  CAS  Google Scholar 

  62. Khoobi M, Motevalizadeh SF, Asadgol Z, Forootanfar H, Shafiee A, Faramarzi MA (2015) Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: characterization and application. Mater Chem Phys 150:77–86

    Article  Google Scholar 

  63. Saleem M, Rafiq M, Seo SY, Lee KH (2016) Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart. Biosci Rep 36:1–9

    Article  Google Scholar 

  64. Zhu J, Sun G (2012) Lipase immobilization on glutaraldehyde-activated nanofibrous membranes for improved enzyme stabilities and activities. React Funct Polym 72:839–845

    Article  CAS  Google Scholar 

  65. Xu R, Zhou Q, Li F, Zhang B (2013) Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem Eng J 222:321–329

    Article  CAS  Google Scholar 

  66. Brena B, Gonzalez-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. In: Guisan JM (ed) Immobilization of enzymes and cells: third edition, Methods in molecular biology, vol 1051. Springer, New York, pp 15–31

    Chapter  Google Scholar 

  67. Tavares AP, Silva CG, Dražić G, Silva AMT, Loureiro JM, Faria JL (2015) Laccase immobilization over multi-walled carbon nanotubes: kinetic, thermodynamic and stability studies. J Colloid Interface Sci 454:52–60

    Article  CAS  Google Scholar 

  68. Krajewska B (2014) Enzyme immobilization by adsorption: a review modifier enzyme. Adsorption 20:801–821

    Article  Google Scholar 

  69. Dai Y, Yao J, Song Y, Liu X, Wang S, Yuan Y (2016) Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. J Hazard Mater 317:485–493

    Article  CAS  Google Scholar 

  70. Kim J, Grate J, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  71. Jindong A (2010) Enzyme immobilised on woolen cloth. PhD Thesis, University of Auckland, New Zealand

    Google Scholar 

  72. Fatarella E, Spinelli D, Ruzzante M, Pogni R (2014) Nylon 6 film and nanofiber carriers: preparation and laccase immobilization performance. J Mol Catal B Enzym 102:41–47

    Article  CAS  Google Scholar 

  73. Isgrove FH, Williams RJ, Niven GW, Andrews AT (2001) Enzyme immobilization on nylon-optimization and the steps used to prevent enzyme leakage from the support. Enzyme Microb Technol 28:225–232

    Article  CAS  Google Scholar 

  74. Hamidi A, Rashidi M, Asgari D, Aghanejad A, Davaran S (2012) Covalent immobilization of trypsin on a novel aldehyde-terminated pamam dendrimer. Bull Korean Chem Soc 33:2181–2186

    Article  CAS  Google Scholar 

  75. Xu R, Chi C, Li F, Zhang B (2013) Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A. Bioresour Technol 149:111–116

    Article  CAS  Google Scholar 

  76. Maryšková M, Ardao I, García-González CA, Martinová L, Rotková J, Ševců A (2016) Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals. Enzyme Microb Technol 89:31–38

    Article  Google Scholar 

  77. Quan J, Liu Z, Branford-White C, Nie H, Zhu L (2014) Fabrication of glycopolymer/MWCNTs composite nanofibers and its enzyme immobilization applications. Colloids Surf B Biointerf 121:417–424

    Article  CAS  Google Scholar 

  78. Cabana H, Ahamed A, Leduc R (2011) Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan. Bioresour Technol 102:1656–1662

    Article  CAS  Google Scholar 

  79. Ignatova M, Stoilova O, Manolova N, Mita D, Diano N, Nicolucci C, Rashkov I (2009) Electrospun microfibrous poly(styrene-alt-maleic anhydride)/poly(styrene-co-maleic anhydride) mats tailored for enzymatic remediation of waters polluted by endocrine disruptors. Eur Polym J 45:2494–2504

    Article  CAS  Google Scholar 

  80. Cloete W, Adriaanse C, Swart P, Klumperman B (2011) Facile immobilization of enzymes on electrospun poly(styrene-alt-maleic anhydride) nanofibres. Polym Chem 2:1479–1481

    Article  CAS  Google Scholar 

  81. Silva C, Silva CJ, Zille A, Guebitz GM, Cavaco-Paulo A (2007) Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres. Enzyme Microb Technol 41:867–875

    Article  CAS  Google Scholar 

  82. Sirisha VL, Jain A, Jain A (2016) Enzyme immobilization: an overview on methods, support material and applications of immobilized enzymes, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  83. Dai Y, Yin L, Niu J (2011) Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environ Sci Technol 45:10611–10618

    Article  CAS  Google Scholar 

  84. Sathishkumar P, Chae J, Unnithan AR, Palvannan T, Yong H, Lee K, Cho M, Kamala-Kannan S, Oh B (2012) Enzyme and microbial technology laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber: Highly stable, reusable, and efficacious for the transformation of diclofenac. Enzyme Microb Technol 51:113–118

    Article  CAS  Google Scholar 

  85. Xu R, Tang R, Zhou Q, Li F, Zhang B (2015) Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes. Chem Eng J 262:88–95

    Article  CAS  Google Scholar 

  86. Ji C, Hou J, Chen V (2016) Cross-linked carbon nanotubes based biocatalytic membranes for micro-pollutants degradation: performance, stability, and regeneration. J Memb Sci 520:869–880

    Article  CAS  Google Scholar 

  87. Hou J, Dong G, Ye Y, Chen V (2014) Laccase immobilization on titania nanoparticles and titania-functionalized membranes. J Memb Sci 452:229–240

    Article  CAS  Google Scholar 

  88. Zimmermann YS, Shahgaldian P, Corvini PF, Hommes G (2011) Sorption-assisted surface conjugation: A way to stabilize laccase enzyme. Appl Microbiol Biotechnol 92:169–178

    Article  CAS  Google Scholar 

  89. Cabana H, Alexandre C, Agathos SN, Jones JP (2009) Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresour Technol 100:3447–3458

    Article  CAS  Google Scholar 

  90. Dai J, Wang H, Chi H, Wang Y, Zhao J (2016) Immobilization of laccase from Pleurotus ostreatus on magnetic separable SiO2 support and excellent activity towards azo dye decolorization. J Environ Chem Eng 4:2585–2591

    Article  CAS  Google Scholar 

  91. Sathishkumar P, Kamala-Kannan S, Cho M, Kim JS, Hadibarata T, Salim MR, Oh BT (2014) Laccase immobilization on cellulose nanofiber: The catalytic efficiency and recyclic application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120

    Article  CAS  Google Scholar 

  92. Hou J, Dong G, Ye Y, Chen V (2014) Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol-gel coated PVDF membrane. J Memb Sci 469:19–30

    Article  CAS  Google Scholar 

  93. Lante A, Crapisi A, Krastanov A, Spettoli P (2000) Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochem 36:51–58

    Article  CAS  Google Scholar 

  94. López C, Mielgo I, Moreira MT, Feijoo G, Lema JM (2002) Enzymatic membrane reactors for biodegradation of recalcitrant compounds. Application to dye decolourisation. J Biotechnol 99:249–225

    Article  Google Scholar 

  95. Nady E, Lepossa A, Prettl Z (2012) Mass transfer through a biocatalytic membrane reactor. Ind Eng Chem Res 51:1635–1646

    Article  Google Scholar 

  96. Nady N, Charles M, Franssen R, Zuilhof H, Boom RM, Schroën K (2012) Enzymatic modification of polyethersulfone membranes. Water 4:932–943

    Article  CAS  Google Scholar 

  97. Nguyen LN, Hai FI, Price WE, Leusch FD, Roddick F, McAdam EJ, Magram SF, Nghiem ID (2014) Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor. Int Biodeterior Biodegrad 95:25–32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Water Research Commission (Project No: K52488//3), Thuthuka National Research Foundation (TTK150608118953), Centre for Nanomaterials Science Research, University of Johannesburg (Faculty of Science), for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya P. Malinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Koloti, L.E., Gule, N.P., Arotiba, O.A., Malinga, S.P. (2018). Recent Applications of Laccase Modified Membranes in the Removal of Bisphenol A and Other Organic Pollutants. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Emerging Trends in Chemical Sciences. ICPAC 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-60408-4_17

Download citation

Publish with us

Policies and ethics