Skip to main content

Identifying Candidate MicroRNAs in MicroRNA-AMPK Gene Interaction Regulating Lipid Accumulation of Bovine Granulosa Cell Luteinization: An In Silico Study

  • Conference paper
  • First Online:
Proceeding of the 1st International Conference on Tropical Agriculture

Abstract

Luteinization is a natural process in bovine, including other mammals, which is indicated by lipid accumulation in small and big granulosa cell. AMPK is one of the major genes controlling this process, which is also involved in the regulation of lipogenesis and its accumulation into granulosa cells. MicroRNAs (miRNAs) are a class of small (19–24 nt) noncoding regulatory RNA that silences gene expression posttranscriptionally through the recognition of complementary sequences between miRNAs and their 3-UTR target genes. Potential miRNAs which may target AMPKA1, catalytic subunit alpha (α) of AMPK heterotrimeric complex, were identified using four miRNA target prediction databases such as miRanda, miRDB, PICTAR, and TargetScan and resulted 33, 28, 16, and 29 predicted miRNAs, respectively. Among them five miRNAs, namely, miR-301, miR-130, miR-101, miR-19a, and miR-19b, were found to be common in miRNAs predicted by four target prediction tools. The sequence similarity and alignment of these miRNAs in human (hsa) and bovine (bta) were determined using miRBase and found that four miRNAs were 100% identical, and only miR-301a has 92% similarity; therefore miR-301a is excluded from the listed miRNA candidate. Importantly, we also found that miR-19b, miR-130, miR-101, and miR-19a have 3, 7, 4, and 3 binding sites, respectively, at 3′ UTR region of AMPKA1. Further experiments focused on candidate miRNA profiling in luteinized granulosa cells, and target validation study is required in order to validate the results of this in silico study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tosca, L., et al.: AMP-activated protein kinase activation modulates progesterone secretion in granulosa cells from hen preovulatory follicles. J. Endocrinol. 190(1), 85–97 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Horman, S., et al.: Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J. Biol. Chem. 281(9), 5335–5340 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Kahn, B.B., et al.: AMP-activated protein kinase. Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1(1), 15–25 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Kayampilly, P.P., Menon, K.M.: Follicle-stimulating hormone inhibits adenosine 5′-monophosphate-activated protein kinase activation and promotes cell proliferation of primary granulosa cells in culture through an Akt-dependent pathway. Endocrinology. 150(2), 929–935 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Tosca, L., et al.: Effects of metformin on bovine granulosa cells steroidogenesis. Possible involvement of adenosine 5′ monophosphate-activated protein kinase (AMPK). Biol. Reprod. 76(3), 368–378 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Li, S., et al.: MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell. 153(3), 562–574 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tosca, L., et al.: Adenosine 5′-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology. 146(10), 4500–4513 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Hopkins, T.A., et al.: AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart. Biochem. Soc. Trans. 31(Pt 1), 207–212 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Picard, M., et al.: Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am. J. Respir. Crit. Care Med. 186(11), 1140–1149 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Prastowo, S., et al.: Fateful triad of reactive oxygen species, mitochondrial dysfunction and lipid accumulation is associated with expression outline of the AMP-activated protein kinase pathway in bovine blastocysts. Reprod. Fertil. Dev. (2016). doi:10.1071/RD15319

  11. Murphy, B.D.: Models of luteinization. Biol. Reprod. 63(1), 2–11 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Hansel, W., et al.: Control of steroidogenesis in small and large bovine luteal cells. Aust. J. Biol. Sci. 40(3), 331–347 (1987)

    Article  CAS  PubMed  Google Scholar 

  13. Hawkins, D.E., et al.: An increase in serum lipids increases luteal lipid content and alters the disappearance rate of progesterone in cows. J. Anim. Sci. 73(2), 541–545 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. Saitoh, M., Takahashi, S.: Embryonic loss and progesterone metabolism in rats fed a high energy diet. J. Nutr. 107(2), 230–234 (1977)

    Article  CAS  PubMed  Google Scholar 

  15. Clemente, M., et al.: Progesterone and conceptus elongation in cattle. A direct effect on the embryo or an indirect effect via the endometrium. Reproduction. 138(3), 507–517 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Hossain, M.M., et al.: Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res. 349(3), 679–690 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. Amanai, M., et al.: A restricted role for sperm-borne microRNAs in mammalian fertilization. Biol. Reprod. 75(6), 877–884 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Tesfaye, D., et al.: Gene expression profile of cumulus cells derived from cumulus-oocyte complexes matured either in vivo or in vitro. Reprod. Fertil. Dev. 21(3), 451–461 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. Hossain, M.M., et al.: Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics. 10, 443 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Svoboda, P., Flemr, M.: The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep. 11(8), 590–597 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kues, W.A., et al.: Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proc. Natl. Acad. Sci. U. S. A. 105(50), 19768–19773 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ye, W., et al.: The effect of central loops in miRNA. MRE duplexes on the efficiency of miRNA-mediated gene regulation. PLoS One. 3(3), e1719 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bartel, D.P.: MicroRNAs. Target recognition and regulatory functions. Cell. 136(2), 215–233 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigit Prastowo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prastowo, S., Amin, A., Sohel, M.H. (2017). Identifying Candidate MicroRNAs in MicroRNA-AMPK Gene Interaction Regulating Lipid Accumulation of Bovine Granulosa Cell Luteinization: An In Silico Study. In: Isnansetyo, A., Nuringtyas, T. (eds) Proceeding of the 1st International Conference on Tropical Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-60363-6_45

Download citation

Publish with us

Policies and ethics