Induction of Reactive Oxygen Species by Trichoderma spp. Against Downy Mildew in Maize

  • Lili Asmawati
  • Ani WidiastutiEmail author
  • Christanti Sumardiyono
Conference paper


Downy mildew is the most important disease in maize and causes severe loss of maize productivity. Trichoderma spp., which can be used as biocontrol agents and plant inducers, could induce reactive oxygen species (ROS). This study aimed to know the potency of Trichoderma spp. in inducing downy mildew disease and inducing ROS. The production of ROS is one of the earliest cellular responses following successful pathogen recognition. There were four Trichoderma isolates in this study: JMA1, JMA2, KMA, and STA. The results showed that KMA, STA, JMA2, and JMA1 isolates significantly reduced disease intensity and the incidence of plant disease. Trichoderma spp. induced ROS as a response of plant resistance against downy mildew.


Plant inducer ROS Trichoderma spp. Downy mildew Maize 



The authors are deeply thankful for Indonesian Education Scholarships (LPDP) under the project of affirmation of scholarship number contract PRJ-87/LPDP/2015.


  1. 1.
    Semangun, H.: Penyakit-Penyakit Tanaman Pangan di Indonesia, Edisi Kedua. [Important Diseases of Food Crops in Indonesia, Second Edition]. Yogyakarta, Universitas Gadjah Mada (2008) (in Bahasa Indonesia)Google Scholar
  2. 2.
    Talanca, et al.: Uji resistensi cendawan (Peronosclerospora maydis) terhadap fungisida saromil 35SD (b.a. metalaksil). [Resistance test of fungus (Peronosclerospora maydis) against saromil fungicide 35SD (b.a. metalaksil)]. In: Scientific Seminar and Annual Meeting Prosiding XXI PEI, pp. 119–122. Balitsereal and Disbun South Sulawesi province, South Sulawesi (2011) (in Bahasa Indonesia)Google Scholar
  3. 3.
    Burhanuddin: Fungisida metalaksil tidak efektif menekan penyakit bulai (Peronosclerospora maydis) di Kalimantan Barat dan alternative pengendaliannya. [Metalaksil fungicide are not effective surpress downy mildew (Peronosclerospora maydis) in West Borneo and alternative control]. In: National Seminar Serealia Prosiding. Agency for Agricultural Research and Development, pp. 395–399. Ministry of Agriculture, Maros, South Sulawesi (ID) (2011)Google Scholar
  4. 4.
    Sumardiyono, C., et al.: Uji ketahanan (Peronosclerospora maydis) penyebab penyakit bulai jagung terhadap fungisida metalaksil. [Endurance test of Peronosclerospora maydis causes downy mildew against metalaksil fungicide]. Final report: Agricultural Faculty of Universitas Gadjah Mada Reseach Grant, Yogyakarta (2012) (in Bahasa Indonesia)Google Scholar
  5. 5.
    Vallad, G.E., Goodman, R.M.: Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 44, 20–34 (2004)CrossRefGoogle Scholar
  6. 6.
    Hammerschmidt, R., Kuc, J.A.: Induced Resistance to Disease in Plants. Kluwer Academic Publishers, Dordrecht (1995)CrossRefGoogle Scholar
  7. 7.
    Widiastuti, A., et al.: Heat shock–induced resistance increases chitinase-1 gene expression and stimulates salicylic acid production in melon (Cucumis melo L.) Physiol. Mol. Plant Pathol. 82, 51–55 (2013)CrossRefGoogle Scholar
  8. 8.
    Harman, G.E., et al.: Trichoderma species-opportunistic, a virulent plant symbionts. Nat. Rev. 2, 43–56 (2004)Google Scholar
  9. 9.
    Druzhinina, I.S., et al.: Trichoderma: the genomics of opportunistic success. Nat. Rev. 9, 749–759 (2011)Google Scholar
  10. 10.
    Shoresh, M., et al.: Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology. 95, 76–84 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    Khan, J., et al.: Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis. 88, 280–286 (2004)CrossRefGoogle Scholar
  12. 12.
    Moreno, C.A., et al.: Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol. Mol. Plant Pathol. 74, 111–120 (2009)CrossRefGoogle Scholar
  13. 13.
    Bae, H., et al.: Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol. Plant-Microbe Interact. 24, 336–351 (2011)CrossRefPubMedGoogle Scholar
  14. 14.
    Barrientos, M.M., et al.: Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl. Environ. Microbiol. 77(9), 3009–3016 (2011)CrossRefGoogle Scholar
  15. 15.
    Acosta, F.A.G., et al.: Role of fungal ROS production in Trichoderma tomato interactions. Rhodes Hellas: IS–MPMI XVI (2014)Google Scholar
  16. 16.
    Bastas, K.K.: Importance of reactive oxygen species in plants–pathogens interactions. Selcuk J Agr. Food Sci. 28(1), 11–12 (2014)Google Scholar
  17. 17.
    Sumardiyono, C., et al.: Uji ketahanan beberapa varietas jagung terhadap penyakit bulai (Peronosclerospora maydis) di Klaten. [Endurance test some corn varieties against downy mildew (Peronosclerospora maydis) in Klaten]. Final report: Agricultural Faculty of Universitas Gadjah Mada Reseach Grant, Yogyakarta (2015) (in Bahasa Indonesia)Google Scholar
  18. 18.
    Mahfud, M.C., et al.: Pengaruh pemupukan petrobio Gr terhadap produktifitas tanaman jagung di daerah endemis penyakit bulai. [Effect of petrobio Gr fertilization against corn crop productivity in downy mildew endemic areas]. BPTP East Java (2011) (in Bahasa Indonesia)Google Scholar
  19. 19.
    Daudi, A., O’Brien, J.A.: Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-protocol 2(18), 263 (2012). Accessed 24 Oct 2015
  20. 20.
    Lamb, C., Dixon, R.A.: The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251–275 (1997)CrossRefPubMedGoogle Scholar
  21. 21.
    Huckelhoven, R., Kogel, K.H.: Reactive oxygen intermediates in plant microbe interactions: who is who in powdery mildew resistance? Planta. 216, 891–902 (2003)PubMedGoogle Scholar
  22. 22.
    Deepak, S.A., et al.: Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiol. Mol. Plant Pathol. 69, 52–61 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lili Asmawati
    • 1
  • Ani Widiastuti
    • 1
    Email author
  • Christanti Sumardiyono
    • 1
  1. 1.Faculty of AgricultureUniversitas Gadjah MadaYogyakartaIndonesia

Personalised recommendations