Skip to main content

Chronic Pain: Pathophysiology and Mechanisms

Abstract

Understanding the mechanisms of pain is important for any clinician since chronic pain is a global problem that transcends all medical specialties. By understanding pain at a cellular level, clinicians can better apply multimodal pain therapies for their patients that address the four steps of pain signaling and processing: transduction, transmission, modulation, and perception. The purpose of this chapter is to explore each of these avenues along the pain pathway and examine some of the therapies currently being employed to treat pain at these levels. The chapter is divided into four sections, which are the four steps of the pain pathway. Within transduction, nociceptors and the process by which they detect noxious stimuli are discussed. Transmission focuses on the types of nerve fibers involved in pain signaling and the differences among them. The section on modulation investigates peripheral, spinal, and supraspinal mechanisms by which “pain” transmission is modified, including peripheral and central sensitization mechanisms. Finally, perception describes the key centers of the brain responsible for pain processing and examines the influence of context and emotions.

Keywords

  • Chronic pain
  • Mechanisms
  • Pathophysiology
  • Transduction
  • Transmission
  • Modulation
  • Perception

This is a preview of subscription content, access via your institution.

Fig. 2.1
Fig. 2.2
Fig. 2.3

References

  1. Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014;348:f7656.

    CrossRef  PubMed  Google Scholar 

  2. Walsh DA, McWilliams DF. Pain in rheumatoid arthritis. Curr Pain Headache Rep. 2012;16:509–17.

    CrossRef  PubMed  Google Scholar 

  3. Woolf CJ, Max MB. Mechanism-based pain diagnosis: issues for analgesic drug development. Anesthesiology. 2001;95:241–9.

    CAS  CrossRef  PubMed  Google Scholar 

  4. Bonica JJ. Bonica’s management of pain. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  5. Messlinger K. Functional morphology of nociceptive and other fine sensory endings in different tissues. Prog Brain Res. 1996;113:273–98.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Devor M, Keller CH, Deerinck RJ, et al. Na+ channel accumulation on axolemma of afferent endings in nerve end neuromas in Apteronotus. Neurosci Lett. 1989;102:149–54.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Lindia JA, Kohler MG, Martin WJ, et al. Relationship between sodium channel Nav1.3 expression and neuropathic pain behavior in rats. Pain. 2005;117:145–53.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Lou ZD, Calcutta NA, Higuera ES, et al. Injury type-specific calcium channel α2δ-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther. 2002;303:1199–205.

    CrossRef  Google Scholar 

  9. Suman-Chauhan N, Webdale L, Hill DR, et al. Characterization of [3H]gabapentin binding to a novel site in rate brain: homogenate binding studies. Eur J Pharmacol. 1993;244:293–301.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Miller KE, Hoffman EM, Sutherham M, et al. Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanism. Pharmacol Ther. 2011;130:283–309.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Harris RT, Napadow V, Huggins JP, et al. Pregabalin rectifies aberrant brain chemistry connectivity, and functional response in chronic pain patients. Anesthesiology. 2013;119:1453–64.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Kohno R, Ji RR, Ito N, et al. Peripheral axonal injury results in reduced mu opioid receptor pre- and post- synaptic action in the spinal cord. Pain. 2005;117:77–87.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Benedetti F, Vighetti S, Amanzio M, et al. Dose-response relationship of opioids in nociceptive and neuropathic postoperative pain. Pain. 1998;74:205–11.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Przewłocki R, Przewłocka B. Opioids in chronic pain. Eur J Pharmacol. 2001;429:79–91.

    CrossRef  PubMed  Google Scholar 

  15. Sikandar S, Dickenson AH. Visceral pain: the ins and outs, the ups and downs. Curr Opin Support Palliat Care. 2012;6:17–26.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Mika J, Zychowska M, Popiolek-Barczyk K, et al. Importance of glial activation in neuropathic pain. Eur J Pharmacol. 2013;716:106–19.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Gosselin RD, Suter MR, Ru-Rong Ji RR, et al. Glial cells and chronic pain. Neuroscientist. 2010;16:519–31.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Wang S, Lim G, Zeng Q, et al. Central glucocorticoid receptors modulate the expression and function of spinal NMDA receptors after peripheral nerve injury. J Neurosci. 2005;25:488–95.

    CrossRef  PubMed  Google Scholar 

  19. Gao YJ, Ji RR. Targeting astrocyte signaling for chronic pain. Neurotherapeutics. 2010;7:482–93.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Landry RP, Jacobs VL, Romero-Sandoval EA, et al. Propentofylline, a CNS glial modulator does not decrease pain in post-herpetic neuralgia patients: in vitro evidence for differential responses in human and rodent microglia and macrophages. Exp Neurol. 2012;234:340–50.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Cohen SP, Liao W, Gupta A, et al. Ketamine in pain management. Adv Psychosom Med. 2011;30:129–61.

    Google Scholar 

  22. Okon T. Ketamine: an introduction for the pain and palliative medicine physician. Pain Physician. 2007;10:493–500.

    PubMed  Google Scholar 

  23. Vorobeychik Y, Willoughby CD, Mao J. NMDA receptor antagonists in the treatment of pain. In: Deer R, Leong MS, Buvanendran A, et al., editors. Comprehensive treatment of chronic pain by medical, interventional, and integrative approaches. New York: Springer; 2013. p. 61–7.

    CrossRef  Google Scholar 

  24. Apkarian AV, Bushnell MC, Treede RD, et al. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463–84.

    CrossRef  PubMed  Google Scholar 

  25. Carlson JD, Maire JJ, Martenson ME, et al. Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury. J Neurosci. 2007;27:13222–31.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Fields HL. Pain modulation, expectation, opioid analgesia and virtual pain. Prog Brain Res. 2000;122:245–53.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Zhou M. Glutamate receptors and persistent pain: targeting forebrain NR2B subunits. Drug Discov Today. 2002;8:259–67.

    CrossRef  Google Scholar 

  28. Cohen SP, Raja SN. Pain. In: Goldman L, Schafer AI, editors. Cecil textbook of medicine. 24th ed. Philadelphia: Saunders; 2011. p. 133–9.

    Google Scholar 

  29. Zhou M, Gebhart GF. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J Neurophysiol. 1997;78:746–58.

    CrossRef  Google Scholar 

  30. Goffaux P, Redmond WJ, Rainville P, et al. Descending analgesia - when the spine echoes what the brain expects. Pain. 2007;130:137–43.

    CrossRef  PubMed  Google Scholar 

  31. Enck P, Benedetti F, Schedlowski M. New insights into the placebo and once I responses. Neuron. 2008;59:195–206.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Grachev I, Fredrickson BE, Apkarian AV. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain. 2000;89:7–18.

    CAS  CrossRef  PubMed  Google Scholar 

  33. Iadarola MJ, Max MB, Berman KF, et al. Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain. 1995;63:55–64.

    CAS  CrossRef  PubMed  Google Scholar 

  34. Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81–97.

    CrossRef  PubMed  Google Scholar 

  35. Rouwette T, Vanelderen P, Roubos EW, et al. The amygdala, a relay station for switching on and off pain. Eur J Pain. 2012;16:782–92.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Seminowicz DA, Wideman TH, Naso L, et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci. 2011;31:7540–50.

    CAS  CrossRef  PubMed  Google Scholar 

  37. Apkarian AV, Sosa Y, Krauss BR, et al. Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004;108:129–36.

    CrossRef  PubMed  Google Scholar 

  38. Dick BD, Rashiq S. Disruption of attention and working memory traces in individuals with chronic pain. Anesth Analg. 2007;104:1223–9.

    CrossRef  PubMed  Google Scholar 

  39. Sjogren P, Christrup LL, Petersen MA, et al. Neuropsychological assessment of chronic non-malignant pain patients treated in a multidisciplinary pain center. Eur J Pain. 2005;9:453–62.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Christiansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Christiansen, S., Cohen, S.P. (2018). Chronic Pain: Pathophysiology and Mechanisms. In: Manchikanti, L., Kaye, A., Falco, F., Hirsch, J. (eds) Essentials of Interventional Techniques in Managing Chronic Pain. Springer, Cham. https://doi.org/10.1007/978-3-319-60361-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60361-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60359-9

  • Online ISBN: 978-3-319-60361-2

  • eBook Packages: MedicineMedicine (R0)