Skip to main content

Abstract

Percutaneous adhesiolysis with a reinforced catheter is an effective method for managing recalcitrant low back and lower extremity pain in post-lumbar surgery syndrome, spinal stenosis, and severe degenerative disc disease. The purpose of percutaneous epidural lysing of adhesions is to minimize the deleterious effects of epidural scarring. This scarring can prevent the direct application of drugs used for treating chronic low back and lower extremity pain to the nerves and other spinal tissues. Racz et al. reported the first use of epidural hypertonic saline to facilitate the lysing of adhesions. Since then, the procedure has evolved into a commonly utilized low back pain treatment when a patient’s pain is recalcitrant to conservative management and epidural injections.

Based on multiple high-quality trials, Level II evidence has been demonstrated for adhesiolysis for managing post-surgery syndrome, lumbar central spinal stenosis, and chronic recalcitrant pain from disc herniation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. US Burden of Disease Collaborators. The state of US health, 1999–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310:591–608.

    Article  PubMed Central  Google Scholar 

  2. Martin BI, Turner JA, Mirza SK, et al. Trends in health care expenditures, utilization, and health status among US adults with spine problems, 1997–2006. Spine (Phila Pa 1976). 2009;34:2077–84.

    Article  Google Scholar 

  3. Gaskin DJ, Richard P. The economic costs of pain in the United States. J Pain. 2012;13:715–24.

    Article  PubMed  Google Scholar 

  4. Manchikanti L, Abdi S, Atluri S, et al. An update of comprehensive evidence-based guidelines for interventional techniques of chronic spinal pain: part II: guidance and recommendations. Pain Physician. 2013;16:S49–S283.

    PubMed  Google Scholar 

  5. Manchikanti L, Manchikanti KN, Gharibo CG, Kaye AD. Efficacy of percutaneous adhesiolysis in the treatment of lumbar post surgery syndrome. Anesth Pain Med 2016; 6:e26172.

    Google Scholar 

  6. Racz GB, Holubec JT. Lysis of adhesions in the epidural space. In: Racz GB, editor. Techniques of neurolysis. Boston: Kluwer Academic Publishers; 1989. p. 57–72.

    Chapter  Google Scholar 

  7. Payne JN, Rupp NH. The use of hyaluronidase in caudal block anesthesia. Anesthesiology. 1951;2:161–72.

    Google Scholar 

  8. Moore DC. The use of hyaluronidase in local and nerve block analgesia other than spinal block. 1520 cases. Anesthesiology. 1951;12:611–26.

    Article  CAS  PubMed  Google Scholar 

  9. Helm S II, Racz GB, Gerdesmeyer L, et al Percutaneous and Endoscopic Adhesiolysis in Managing Low Back and Lower Extremity Pain: A Systematic Review and Meta-analysis. Pain Physician. 2016l; 19:E245–E81

    Google Scholar 

  10. Heavner JE, Racz GB, Raj PP. Percutaneous epidural neuroplasty. Prospective evaluation of 0.9% NaCl versus 10% NaCl with or without hyaluronidase. Reg Anesth Pain Med. 1999;24:202–7.

    Article  CAS  PubMed  Google Scholar 

  11. Manchikanti L, Rivera JJ, Pampati VS, et al. One day lumbar epidural adhesiolysis and hypertonic saline neurolysis in treatment of chronic low back pain: a randomized, double-blind trial. Pain Physician. 2004;7:177–86.

    PubMed  Google Scholar 

  12. Veihelmann A, Devens C, Trouillier H, et al. Epidural neuroplasty versus physiotherapy to relieve pain in patients with sciatica: a prospective randomized blinded clinical trial. J Orthop Sci. 2006;11:365–9.

    Article  PubMed  Google Scholar 

  13. Manchikanti L, Singh V, Cash KA, et al. Assessment of effectiveness of percutaneous adhesiolysis and caudal epidural injections in managing lumbar post surgery syndrome: a 2-year follow-up of randomized, controlled trial. J Pain Res. 2012;5:597–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manchikanti L, Cash KA, McManus CD, et al. Assessment of effectiveness of percutaneous adhesiolysis in managing chronic low back pain secondary to lumbar central spinal canal stenosis. Int J Med Sci. 2013;10:50–9.

    Article  PubMed  Google Scholar 

  15. Gerdesmeyer L, Wagenpfeil S, Birkenmaier C, et al. Percutaneous epidural lysis of adhesions in chronic lumbar radicular pain: a randomized double-blind placebo controlled trial. Pain Physician. 2013;16:185–96.

    PubMed  Google Scholar 

  16. Manchikanti L, Helm S II, Pampati V, et al. Cost utility analysis of percutaneous adhesiolysis in managing pain of post-lumbar surgery syndrome and lumbar central spinal stenosis. Pain Pract. 2015;15(5):414–22.

    Article  PubMed  Google Scholar 

  17. Lee JH, Lee SH. Clinical effectiveness of percutaneous adhesiolysis versus transforaminal epidural steroid injection in patients with postlumbar surgery syndrome. Reg Anesth Pain Med. 2014;39(3):214–8.

    Article  CAS  PubMed  Google Scholar 

  18. Manchikanti L, Helm S II, Pampati V, et al. Percutaneous adhesiolysis procedures in the medicare population: analysis of utilization and growth patterns from 2000 to 2011. Pain Physician. 2014;17:E129–39.

    PubMed  Google Scholar 

  19. Choi E, Nahm FS, Lee PB. Evaluation of prognostic predictors of percutaneous adhesiolysis using a Racz catheter for post lumbar surgery syndrome or spinal stenosis. Pain Physician. 2013;16:E531–6.

    PubMed  Google Scholar 

  20. Park CH, Lee SH. Effectiveness of percutaneous transforaminal adhesiolysis in patients with lumbar neuroforaminal spinal stenosis. Pain Physician. 2013;16:E37–43.

    PubMed  Google Scholar 

  21. Lee JH, Lee SH. Clinical effectiveness of percutaneous adhesiolysis using Navicath for the management of chronic pain due to lumbosacral disc herniation. Pain Physician. 2012;15:213–21.

    PubMed  Google Scholar 

  22. Park CH, Lee SH, Jung JY. Dural sac cross-sectional area does not correlate with efficacy of percutaneous adhesiolysis in single level lumbar spinal stenosis. Pain Physician. 2011;14:377–82.

    PubMed  Google Scholar 

  23. Lee JH, Lee SH. Clinical effectiveness of percutaneous adhesiolysis and predictive factors of treatment efficacy in patients with lumbosacral spinal stenosis. Pain Med. 2013;14:1497–504.

    Article  PubMed  Google Scholar 

  24. Manchikanti L, Heavner JE, Racz GB. Percutaneous lysis of lumbar epidural adhesions. In: Manchikanti L, Singh V, editors. Interventional techniques in chronic spinal pain. Paducah: ASIPP Publishing; 2007. p. 479–506.

    Google Scholar 

  25. Kuslich SD, Ulstrom CL, Michael CJ. The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operation on the lumbar spine using local anesthesia. Orthop Clin North Am. 1991;22:181–7.

    CAS  PubMed  Google Scholar 

  26. Viesca CO, Racz GB, Day MR. Special techniques in pain management: lysis of adhesions. Anesthesiol Clin North Am. 2003;21:745–66.

    Article  Google Scholar 

  27. Martin BI, Mirza SK, Comstock BA, et al. Reoperation rates following lumbar spine surgery and the influence of spinal fusion procedures. Spine (Phila Pa 1976). 2007;32:382–7.

    Article  Google Scholar 

  28. Fritsch EW, Heisel J, Rupp S. The failed back surgery syndrome. Reasons, intraoperative findings, and long-term results: a report of 182 operative treatments. Spine (Phila Pa 1976). 1996;21:626–33.

    Article  CAS  Google Scholar 

  29. Schofferman J, Reynolds J, Herzog R, et al. Failed back surgery: etiology and diagnostic evaluation. Spine J. 2003;3:400–3.

    Article  PubMed  Google Scholar 

  30. Waddell G, Kummel EG, Lotto WN, et al. Failed lumbar disc surgery and repeat surgery following industrial injury. J Bone Joint Surg Am. 1979;61:201–7.

    Article  CAS  PubMed  Google Scholar 

  31. Deyo RA, Mirza SK, Martin BI, et al. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA. 2010;303:1259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rajaee SS, Bae HW, Kanim LE, et al. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine (Phila Pa 1976). 2012;37:67–76.

    Article  Google Scholar 

  33. Tosteson AN, Tosteson TD, Lurie JD, et al. Comparative effectiveness evidence from the spine patient outcomes research trial: surgical versus nonoperative care for spinal stenosis, degenerative spondylolisthesis, and intervertebral disc herniation. Spine (Phila Pa 1976). 2011;36:2061–8.

    Article  Google Scholar 

  34. Deyo RA, Martin BI, Kreuter W, et al. Revision surgery following operations for lumbar stenosis. J Bone Joint Surg Am. 2011;93:1979–86.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nachemson AL. Failed back surgery syndrome is syndrome of failed back surgeons. Pain Clinic. 1999;11:271–84.

    Google Scholar 

  36. Ross JS, Robertson JT, Frederickson RC, et al. Association between peridural scar and recurrent radicular pain after lumbar discectomy: magnetic resonance evaluation. Neurosurgery. 1996;38:855–63.

    Article  CAS  PubMed  Google Scholar 

  37. Jou IM, Tai TW, Tsai CL, et al. Spinal somatosensory evoked potential to evaluate neurophysiologic changes associated with postlaminotomy fibrosis: an experimental study. Spine (Phila Pa 1976). 2007;32:2111–8.

    Article  Google Scholar 

  38. Alkalay RN, Kim DH, Urry DW, et al. Prevention of postlaminectomy epidural fibrosis using bioelastic materials. Spine (Phila Pa 1976). 2003;28:1659–65.

    Google Scholar 

  39. Ozer AF, Oktenoglu T, Sasani M, et al. Preserving the ligamentum flavum in lumbar discectomy: a new technique that prevents scar tissue formation in the first 6 months post surgery. Neurosurgery. 2006;59:ONS126–33.

    Article  PubMed  Google Scholar 

  40. Cooper RG, Freemont AJ, Hoyland JA, et al. Herniated intervertebral disc-associated periradicular fibrosis and vascular abnormalities occur without inflammatory cell infiltration. Spine (Phila Pa 1976). 1995;20:591–8.

    Article  CAS  Google Scholar 

  41. Schimizzi AL, Massie JB, Murphy M, et al. High-molecular-weight hyaluronan inhibits macrophage proliferation and cytokine release in the early wound of a preclinical postlaminectomy rat model. Spine J. 2006;6:550–6.

    Article  PubMed  Google Scholar 

  42. Brzezicki G, Jankowski R, Blok T, et al. Postlaminectomy osteopontin expression and associated neurophysiological findings in rat peridural scar model. Spine (Phila Pa 1976). 2011;36:378–85.

    Article  Google Scholar 

  43. Massie JB, Huang B, Malkmus S, et al. A preclinical post laminectomy rat model mimics the human post laminectomy syndrome. J Neurosci Methods. 2004;137:283–9.

    Article  PubMed  Google Scholar 

  44. Haq I, Cruz-Almeida Y, Siqueira EB, et al. Postoperative fibrosis after surgical treatment of the porcine spinal cord: a comparison of dural substitutes. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2004. J Neurosurg Spine. 2005;2:50–4.

    Article  PubMed  Google Scholar 

  45. Hoyland JA, Freemont AJ, Jayson MI. Intervertebral foramen venous obstruction: a cause of periradicular fibrosis? Spine (Phila Pa 1976). 1989;14:558–68.

    Article  CAS  Google Scholar 

  46. Parke WW, Watanabe R. Adhesions of the ventral lumbar dura. Adjunct source of discogenic pain? Spine (Phila Pa 1976). 1990;15:300–3.

    Article  CAS  Google Scholar 

  47. Rydevik BL. The effects of compression on the physiology of nerve roots. J Manip Physiol Ther. 1992;1:62–6.

    Google Scholar 

  48. Olmarker K, Rydevik B. Pathophysiology of spinal nerve roots as related to sciatica and disc herniation. In: Herkowitz HN, Garfin SR, Balderston RA, et al., editors. Rothman-Simeone studies, the spine. Philadelphia, PA: WB Saunders; 1999. p. 159–72.

    Google Scholar 

  49. Songer M, Ghosh L, Spencer D. Effects of sodium hyaluronate on peridural fibrosis after lumbar laminectomy and discectomy. Spine (Phila Pa 1976). 1990;15:550–4.

    Article  CAS  Google Scholar 

  50. Kovacs FM, Urrútia G, Alarcón JD. Surgery versus conservative treatment for symptomatic lumbar spinal stenosis: a systematic review of randomized controlled trials. Spine (Phila Pa 1976). 2011;36:E1335–51.

    Article  Google Scholar 

  51. Kobayashi S, Kokubo Y, Uchida K, et al. Effect of lumbar nerve root compression on primary sensory neurons and their central branches: changes in the nociceptive neuropeptides substance P and somatostatin. Spine (Phila Pa 1976). 2005;30:276–82.

    Article  Google Scholar 

  52. Racz GB, Day MR, Heavner JE, et al. The Racz procedure: lysis of epidural adhesions (percutaneous neuroplasty). In: Deer TR, Leong MS, Buvanendran A, et al., editors. Comprehensive treatment of chronic pain by medical, interventional, and integrative approaches. New York: Springer; 2013. p. 521–34.

    Chapter  Google Scholar 

  53. Manchikanti L, Falco FJE, Benyamin RM, et al. A modified approach to grading of evidence. Pain Physician. 2014;17:E319–25.

    PubMed  Google Scholar 

  54. Bogduk N. The innervation of the lumbar spine. Spine (Phila Pa 1976). 1983;8:286–93.

    Article  CAS  Google Scholar 

  55. Ansari S, Heavner JE, McConnell DJ, et al. The peridural membrane of the spinal canal: a critical review. Pain Pract. 2012;12:315–25.

    Article  PubMed  Google Scholar 

  56. Standring S. Macroscopic anatomy of the spinal cord and spinal nerves. In: Gray’s anatomy: the anatomical basis of clinical practice. 39th ed. London: Churchill Livingstone; 2005. p. 775–88.

    Google Scholar 

  57. Bowsher D. A comparative study of the azygous venous system in man, monkey, dog, cat, rat and rabbit. J Anat. 1954;88:400–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Woollam DHM, Millen JW. The arterial supply of the spinal cord and its significance. J Neurochem. 1955;18:97–102.

    CAS  Google Scholar 

  59. Clemens HJ. Die Venensysteme der Menschlichen Wirbelsaule. Berlin: Walter de Gruyter & Co; 1961.

    Google Scholar 

  60. Willis RJ. Caudal epidural blockade. In: Cousins MJ, Bridenbaugh PO, editors. Neural blockade in clinical anesthesia and management of pain. New York: Lippincott-Raven Press; 1998. p. 323–42.

    Google Scholar 

  61. Rocco AG. Epidural space as a starling resistor and elevation of inflow resistance in a diseased epidural space. Reg Anesth. 1997;22:167–77.

    Article  CAS  PubMed  Google Scholar 

  62. Ajar AM, Rathmel JP, Mukherji SK. The subdural compartment. Reg Anesth Pain Med. 2002;27:72–6.

    Article  PubMed  Google Scholar 

  63. Collier CB. Accidental subdural block: four more cases and a radiographic review. Anaesth Intensive Care. 1992;20:215–32.

    CAS  PubMed  Google Scholar 

  64. Collier CB. Accidental subdural injection during attempted lumbar epidural block may present as a failed or inadequate block: radiographic evidence. Reg Anesth Pain Med. 2004;29:45–51.

    PubMed  Google Scholar 

  65. Manchikanti L. Role of neuraxial steroids in interventional pain management. Pain Physician. 2002;5:182–99.

    PubMed  Google Scholar 

  66. Lewandowski EM. The efficacy of solutions used in caudal neuroplasty. Pain Digest. 1997;7:323–30.

    Google Scholar 

  67. Aldrete JA, Zapata JC, Ghaly R. Arachnoiditis following epidural adhesiolysis with hypertonic saline report of two cases. Pain Digest. 1996;6:368–70.

    Google Scholar 

  68. Kim RC, Porter RW, Choi BH, et al. Myelopathy after intrathecal administration of hypertonic saline. Neurosurgery. 1988;22:942–5.

    Article  CAS  PubMed  Google Scholar 

  69. Nelson DA. Intraspinal therapy using methylprednisolone acetate. Spine (Phila Pa 1976). 1993;18:278–86.

    Article  CAS  Google Scholar 

  70. Lucas JS, Ducker TB, Perot PL. Adverse reactions to intrathecal saline injections for control of pain. J Neurosurg. 1975;42:557–61.

    Article  CAS  PubMed  Google Scholar 

  71. Manchikanti L, Bakhit CE. Removal of a torn Racz catheter from lumbar epidural space. Reg Anesth. 1997;22:579–81.

    CAS  PubMed  Google Scholar 

  72. Perkins WJ, Davis DH, Huntoon MA, et al. A retained Racz catheter fragment after epidural neurolysis: implications during magnetic resonance imaging. Anesth Analg. 2003;96:1717–9.

    Article  PubMed  Google Scholar 

  73. Lingenfelter RW. Hazard of a new epidural catheter. Anesthesiology. 1983;58:292–3.

    Article  CAS  PubMed  Google Scholar 

  74. Ellis JS Jr, Ramamurthy S. More problems with the Arrow-Racz epidural catheter. Anesthesiology. 1986;65:124–6.

    Article  PubMed  Google Scholar 

  75. Landow L. Monitoring adverse drug events: the food and drug administration MedWatch reporting system. Reg Anesth Pain Med. 1998;23:190–3.

    CAS  PubMed  Google Scholar 

  76. Kushner FH, Olson JC. Retinal hemorrhage as a consequence of epidural steroid injection. Arch Ophthalmol. 1995;113:309–13.

    Article  CAS  PubMed  Google Scholar 

  77. Bromage PR, Benumof JL. Paraplegia following intracord injection during attempted epidural anesthesia under general anesthesia. Reg Anesth Pain Med. 1998;23:104–7.

    Article  CAS  PubMed  Google Scholar 

  78. Rathmell JP, Garahan MB, Alsofrom GF. Epidural abscess following epidural analgesia. Reg Anesth Pain Med. 2000;25:79–82.

    Article  CAS  PubMed  Google Scholar 

  79. Manchikanti L, Pampati VS, Beyer CD, et al. The effect of neuraxial steroids on weight and bone mass density: a prospective evaluation. Pain Physician. 2000;3:357–66.

    CAS  PubMed  Google Scholar 

  80. Horlocker TT, Wedel DJ, Benzon H, et al. Regional anesthesia in the anticoagulated patient: defining the risks (the second ASRA consensus conference on neuraxial anesthesia and anticoagulation). Reg Anesth Pain Med. 2003;28:172–97.

    PubMed  Google Scholar 

  81. Racz GB, Heavner JE. Complications associated with lysis of epidural adhesions and epiduroscopy. In: Rathmell JP, Neal J, editors. Complications in regional anesthesia and pain medicine. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 373–84.

    Google Scholar 

  82. Manchikanti L, Falco FJE, Benyamin RM, et al. Assessment of bleeding risk of interventional techniques: a best evidence synthesis of practice patterns and perioperative management of anticoagulant and antithrombotic therapy. Pain Physician. 2013;16:SE261–318.

    PubMed  Google Scholar 

  83. Horlocker TT, Wedel DJ, Rowlingson JC, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American society of regional anesthesia and pain medicine evidence-based guidelines (third edition). Reg Anesth Pain Med. 2010;35:64–101.

    Article  CAS  PubMed  Google Scholar 

  84. International Spine Intervention Society. Anticoagulants. In: Bogduk N, editor. Practice guidelines for spinal diagnostic and treatment procedures. 2nd ed. San Francisco: International Spine Intervention Society; 2013. p. 9–17.

    Google Scholar 

  85. Manchikanti L, Malla Y, Wargo BW, et al. A prospective evaluation of bleeding risk of interventional techniques in chronic pain. Pain Physician. 2011;14:317–29.

    PubMed  Google Scholar 

  86. Gogarten W, Vandermeulen E, Van Aken H, et al. Regional anaesthesia and antithrombotic agents: recommendations of the European Society of Anaesthesiology. Eur J Anaesthesiol. 2010;27:999–1015.

    Article  CAS  PubMed  Google Scholar 

  87. Raj PP, Shah RV, Kaye AD, et al. Bleeding risk in interventional pain practice: assessment, management, and review of the literature. Pain Physician. 2004;7:3–52.

    PubMed  Google Scholar 

  88. Manchikanti L, Kaye AD, Falco FJE. Antithrombotic and antiplatelet therapy. In: Manchikanti L, Kaye AD, Falco FJE, et al., editors. Essentials of interventional techniques in managing chronic pain. New York: Springer; 2017.

    Google Scholar 

  89. Rose A. Periprocedural anticoagulation – adult – inpatient and ambulatory– clinical practice guideline. UW Health, Original Oct 2011, Revised Feb 2013. http://www.uwhealth.org/files/uwhealth/docs/anticoagulation/Periprocedural_Anticoagulation_Guideline.pdf.

  90. Greene WB. Netter’s orthopaedics. 1st ed. Philadelphia: Saunders Elsevier; 2006.

    Google Scholar 

  91. Netter FH. Atlas of human anatomy. 4th ed. Philadelphia: Saunders Elsevier; 2006.

    Google Scholar 

  92. Drake R, et al. Gray’s anatomy for students. 1st ed. Philadelphia: Elsevier; 2005.

    Google Scholar 

  93. Standring S. Gray’s anatomy: the anatomical basis of clinical practice, E-edition. 39th ed. Edinburgh: Elsevier; 2005.

    Google Scholar 

Download references

Acknowledgments

This book chapter is modified and updated from a previous book chapter, “Percutaneous Lysis of Lumbar Epidural Adhesions” by Laxmaiah Manchikanti, MD, James E. Heavner, MD, and Gabor B. Racz, MD, in the Interventional Techniques in Chronic Spinal Pain published by ASIPP Publishing. Permission has been obtained from ASIPP Publishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmaiah Manchikanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manchikanti, L., Heavner, J.E., Racz, G.B. (2018). Percutaneous Adhesiolysis. In: Manchikanti, L., Kaye, A., Falco, F., Hirsch, J. (eds) Essentials of Interventional Techniques in Managing Chronic Pain. Springer, Cham. https://doi.org/10.1007/978-3-319-60361-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60361-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60359-9

  • Online ISBN: 978-3-319-60361-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics