Skip to main content

The Genetic System of Actinobacteria

  • Chapter
  • First Online:
  • 1750 Accesses

Abstract

Approximately 20–25% of all of the reported natural products (NP) show biological activity, and of these, approximately 10% have been obtained from microbes. Furthermore, more than half of the latter are produced by Actinobacteria, which are the most productive microbes known to date concerning the generation of natural products. Some representatives of this phylum are able to produce up to 30–50 secondary metabolites, which are a potential source of unique chemical scaffolds and biological activities. Thus, these bacteria have attracted scientific and industrial interest for decades. In this chapter, we overview the sequencing technologies that are used for deciphering the genomes of these fascinating bacteria. The main features and peculiarities of Actinobacteria genomes are also described. In addition, reporter genes, which are used for the investigation of gene expression under different conditions; vectors for gene cloning, expression and inactivation; and the latest genetic engineering tools, which are utilised for rational strain improvement with the aim of increasing the yield of valuable compounds, are summarised.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alduina R, Gallo G (2012) Artificial chromosomes to explore and to exploit biosynthetic capabilities of actinomycetes. J Biomed Biotechnol 462049. doi:10.1155/2012/462049

  • Allardet-Servent A, Michaux-Charachon S, Jumas-Bilak E, Karayan L, Ramuz M (1993) Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J Bacteriol 175(24):7869–7874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anné J, Wohlleben W, Burkardt HJ, Springer R, Pühler A (1984) Morphological and molecular characterisation of several actinophages isolated from soil which lyse Streptomyces cattleya or Streptomyces venezuelae. J Gen Microbiol 130:2639–2649

    PubMed  Google Scholar 

  • Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14:529–532

    Article  CAS  PubMed  Google Scholar 

  • Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41(2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Baltz R (2017) Gifted microbes for genome mining and natural product discovery. Journal of Industrial Microbiology & Biotechnology 44(4–5):573–588

    Google Scholar 

  • Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8(5):557–563

    Article  CAS  PubMed  Google Scholar 

  • Baltz RH (2011) Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 38(6):657–666

    Article  CAS  PubMed  Google Scholar 

  • Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 9(5):661–672

    Article  CAS  Google Scholar 

  • Baltz RH (2017) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44(4–5):573–588

    Google Scholar 

  • Baranasic D, Gacesa R, Starcevic A, Zucko J, Blazic M, Horvat M, Gjuracic K, Fujs S, Hranueli D, Kosec G, Cullum J, Petkovic H (2013) Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc 1(4):e00581–e00513

    Article  PubMed  PubMed Central  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L et al (2015) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80(1):1–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Google Scholar 

  • Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38(1–3):215–226

    Article  CAS  PubMed  Google Scholar 

  • Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116(1):43–49

    Article  CAS  PubMed  Google Scholar 

  • Bilyk O, Luzhetskyy A (2016) Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol 42:98–107

    Article  CAS  PubMed  Google Scholar 

  • Bilyk B, Weber S, Myronovskyi M, Bilyk O, Petzke L, Luzhetskyy A (2013) In vivo random mutagenesis of streptomycetes using mariner-based transposon Himar1. Appl Microbiol Biotechnol 97(1):351–359

    Article  CAS  PubMed  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  CAS  PubMed  Google Scholar 

  • Boissel S, Jarjour J, Astrakhan A et al (2014) megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 42(4):2591–2601

    Article  CAS  PubMed  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6(1):7–28

    Article  CAS  PubMed  Google Scholar 

  • Buttner MJ, Brown NL (1987) Two promoters from the Streptomyces plasmid pIJ101 and their expression in Escherichia coli. Gene 51(2–3):179–186

    Article  CAS  PubMed  Google Scholar 

  • Cadenas RF, Martín JF, Gil JA (1991) Construction and characterization of promoter-probe vectors for Corynebacteria using the kanamycin-resistance reporter gene. Gene 98(1):117–121

    Article  CAS  PubMed  Google Scholar 

  • Canals A, Blanco AG, Coll M (2012) σ70 and PhoB activator: getting a better grip. Transcription 3(4):160–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandra G, Chater KF (2008) Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA. Antonie Van Leeuwenhoek 94(1):111–126

    Article  CAS  PubMed  Google Scholar 

  • Chang AC, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134(3):1141–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chary VK, de la Fuente JL, Liras P, Martin JF (1997) Amy as a reporter gene for promoter activity in Nocardia lactamdurans: comparison of promoters of the cephamycin cluster. Appl Environ Microbiol 63(8):2977–2982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CW, Huang CH, Lee HH, Tsai HH, Kirby R (2002) Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet 18(10):522–529

    Article  CAS  PubMed  Google Scholar 

  • Chung ST (1987) Tn4556, a 6.8-kilobase-pair transposable element of Streptomyces fradiae. J Bacteriol 169(10):4436–4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728

    Article  CAS  PubMed  Google Scholar 

  • Cone MC, Petrich AK, Gould SJ, Zabriskie TM (1998) Cloning and heterologous expression of blasticidin S biosynthetic genes from Streptomyces griseochromogenes. J Antibiot (Tokyo) 51(6):570–578

    Article  CAS  Google Scholar 

  • Craney A, Hohenauer T, Xu Y, Navani NK, Li Y, Nodwell J (2007) A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria. Nucleic Acids Res 35(6):e46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui H, Ni X, Shao W et al (2015) Functional manipulations of the tetramycin positive regulatory gene ttmRIV to enhance the production of tetramycin A and nystatin A1 in Streptomyces ahygroscopicus. J Ind Microbiol Biotechnol 42(9):1273–1282

    Article  CAS  PubMed  Google Scholar 

  • Damasceno JD, Beverley SM, Tosi LR (2010) A transposon toolkit for gene transfer and mutagenesis in protozoan parasites. Genetica 138(3):301–311

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    Article  CAS  PubMed  Google Scholar 

  • Dickens ML, Strohl WR (1996) Isolation and characterization of a gene from Streptomyces sp. strain C5 that confers the ability to convert daunomycin to doxorubicin on Streptomyces lividans TK24. J Bacteriol 178(11):3389–3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickens ML, Ye J, Strohl WR (1996) Cloning, sequencing, and analysis of aklaviketone reductase from Streptomyces sp. strain C5. J Bacteriol 178(11):3384–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drepper T, Arvani S, Rosenau F, Wilhelm S, Jaeger KE (2005) High-level transcription of large gene regions: a novel T(7) RNA-polymerase-based system for expression of functional hydrogenases in the phototrophic bacterium Rhodobacter capsulatus. Biochem Soc Trans 33(Pt 1):56–58

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt T, Strickler J, Gorniak L, Burnett WV, Fare LR (1987) Characterization of the promoter, signal sequence, and amino terminus of a secreted beta-galactosidase from “Streptomyces lividans”. J Bacteriol 169(9):4249–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Enríquez LL, Mendes MV, Antón N, Tunca S, Guerra SM, Martín JF, Aparicio JF (2006) An efficient gene transfer system for the pimaricin producer Streptomyces natalensis. FEMS Microbiol Lett 257(2):312–318

    Article  PubMed  CAS  Google Scholar 

  • Equbal MJ, Srivastava P, Agarwal GP, Deb JK (2013) Novel expression system for Corynebacterium acetoacidophilum and tools. Appl Microbiol Biotechnol 97(17):7755–7766

    Article  CAS  PubMed  Google Scholar 

  • Farkasovská J, Klucar L, Vlcek C, Kokavec J, Godány A (2007) Complete genome sequence and analysis of the Streptomyces aureofaciens phage mu1/6. Folia Microbiol 52:347–358

    Article  Google Scholar 

  • Fedoryshyn M, Welle E, Bechthold A, Luzhetskyy A (2008a) Functional expression of the Cre recombinase in actinomycetes. Appl Microbiol Biotechnol 78(6):1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Fedoryshyn M, Petzke L, Welle E, Bechthold A, Luzhetskyy A (2008b) Marker removal from actinomycetes genome using Flp recombinase. Gene 419(1–2):43–47

    Article  CAS  PubMed  Google Scholar 

  • Ferdows MS, Barbour AG (1989) Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc Natl Acad Sci U S A 86(15):5969–5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Martínez LT, Del Sol R, Evans MC et al (2011) A transposon insertion single-gene knockout library and new ordered cosmid library for the model organism Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek 99(3):515–522

    Article  PubMed  Google Scholar 

  • Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7(1):36–49

    Article  PubMed  CAS  Google Scholar 

  • Fleige C, Steinbüchel A (2014) Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol 98(14):6387–6395

    Article  CAS  PubMed  Google Scholar 

  • Forsman M, Jaurin B (1987) Chromogenic identification of promoters in Streptomyces lividans by using an ampC beta-lactamase promoter-probe vector. Mol Gen Genet 210(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Gehring AM, Nodwell JR, Beverley SM, Losick R (2000) Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci U S A 97:9642–9647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golomb M, Chamberlin M (1974) A preliminary map of the major transcription units read by T7 RNA polymerase on the T7 and T3 bacteriophage chromosomes. Proc Natl Acad Sci U S A 71(3):760–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Escribano JP, Castro JF, Razmilic V et al (2015) The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics 16:485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goryshin I, Jendrisak J, Hoffman L, Meis R, Reznikoff WS (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18:97–100

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ, Hong ST, Carney JR (1998) Cloning and heterologous expression of genes from the kinamycin biosynthetic pathway of Streptomyces murayamaensis. J Antibiot (Tokyo) 51(1):50–57

    Article  CAS  Google Scholar 

  • Grabher C, Wittbrodt J (2008) Recent advances in meganuclease-and transposon-mediated transgenesis of medaka and zebrafish. Methods Mol Biol 461:521–539

    Article  CAS  PubMed  Google Scholar 

  • Gregory MA, Till R, Smith MC (2003) Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol 185:5320–5323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiney DG, Yakobson E (1983) Location and nucleotide sequence of the transfer origin of the broad host range plasmid RK2. Proc Natl Acad Sci U S A 80(12):3595–3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha HS, Hwang YI, Choi SU (2008) Application of conjugation using phiC31 att/int system for Actinoplanes teichomyceticus, a producer of teicoplanin. Biotechnol Lett 30:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Hastings JW, Gibson QH (1963) Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. J Biol Chem 238:2537–2554

    CAS  PubMed  Google Scholar 

  • Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci U S A 101(39):14031–14035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann S, Siegl T, Luzhetska M et al (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78(6):1804–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindle Z, Smith CP (1994) Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 12(5):737–745

    Article  CAS  PubMed  Google Scholar 

  • Hirsch AM, Alvarado J, Bruce D et al (2013) Complete genome sequence of Micromonospora strain L5, a potential plant-growth-regulating actinomycete, originally isolated from Casuarina equisetifolia root nodules. Genome Announc 1(5) pii: e00759-13. doi:10.1128/genomeA.00759-13

  • Hodge DR, Thompson DM, Panayiotakis A, Seth A (1995) Transcriptional activation analysis by the chloramphenicol acetyl transferase (CAT) enzyme assay. Methods Mol Biol 37:409–421

    CAS  PubMed  Google Scholar 

  • Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci U S A 79(11):3398–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes DJ, Caso JL, Thompson CJ (1993) Autogenous transcriptional activation of a thiostrepton induced gene in Streptomyces lividans. EMBO J 12(8):3183–3191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopwood DA (2006) Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40:1–23

    Article  CAS  PubMed  Google Scholar 

  • Horbal L, Luzhetskyy A (2016) Dual control system – a novel scaffolding architecture of an inducible regulatory device for the precise regulation of gene expression. Metab Eng 37:11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horbal L, Rebets Y, Rabyk M et al (2010) Characterization and analysis of the regulatory network involved in control of lipomycin biosynthesis in Streptomyces aureofaciens Tü117. Appl Microbiol Biotechnol 85(4):1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Horbal L, Zaburannyy N, Ostash B, Shulga S, Fedorenko V (2012) Manipulating the regulatory genes for teicoplanin production in Actinoplanes teichomyceticus. World J Microbiol Biotechnol 28(5):2095–2100

    Article  CAS  PubMed  Google Scholar 

  • Horbal L, Fedorenko V, Bechthold A, Luzhetskyy A (2013a) A transposon-based strategy to identify the regulatory gene network responsible for landomycin E biosynthesis. FEMS Microbiol Lett 342(2):138–146

    Article  CAS  PubMed  Google Scholar 

  • Horbal L, Kobylyanskyy A, Yushchuk O et al (2013b) Evaluation of heterologous promoters for genetic analysis of Actinoplanes teichomyceticus – producer of teicoplanin, drug of last defense. J Biotechnol 168(4):367–372

    Article  CAS  PubMed  Google Scholar 

  • Horbal L, Fedorenko V, Luzhetskyy A (2014a) Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biotechnol 98(20):8641–8655

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin Shanghai 47(4):231–243. doi:10.1093/abbs/gmv007

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Takada Y, Pang CH, Tanaka H, Omura S (1993) Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol 175(7):2077–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Ingram C, Brawner M, Youngman P, Westpheling J (1989) xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol 171(12):6617–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa J, Yamashita A, Mikami Y et al (2004) The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A 101(41):14925–14930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki A, Kishida H, Okanishi M (1986) Molecular cloning of a xylanase gene from Streptomyces sp. No. 36a and its expression in streptomycetes. J Antibiot (Tokyo) 39(7):985–993

    Article  CAS  Google Scholar 

  • Jakimowicz D, Majka J, Messer W et al (1998) Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein. Microbiology 144(Pt 5):1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Jaurin B, Cohen SN (1985) Streptomyces contain Escherichia coli-type A + T-rich promoters having novel structural features. Gene 39(2–3):191–201

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Sim YM, Kim HJ et al (2013) Genome sequences of Amycolatopsis orientalis subsp. orientalis strains DSM 43388 and DSM 46075. Genome Announc 1(4). pii: e00545-13. doi:10.1128/genomeA.00545-13

  • Jiang J, Tetzlaff CN, Takamatsu S et al (2009) Genome mining in Streptomyces avermitilis: a biochemical Baeyer–Villiger reaction and discovery of a new branch of the pentalenolactone family tree. Biochemist 48:6431–6440

    Article  CAS  Google Scholar 

  • Katz L, Baltz RHJ (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43(2–3):155–176

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Thompson CJ, Hopwood DA (1983) Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol 129(9):2703–2714

    CAS  PubMed  Google Scholar 

  • Kennedy EM, Cullen BR (2015) Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479–480:213–220

    Article  PubMed  CAS  Google Scholar 

  • Khodakaramian G, Lissenden S, Gust B et al (2006) Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Res 34(3):e20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kieser T, Hopwood DA, Wright HM, Thompson CJ (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185(2):223–228

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Kirby R (2011) Chromosome diversity and similarity within the Actinomycetales. FEMS Microbiol Lett 319(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Knirschova R, Novakova R, Mingyar E, Bekeova C, Homerova D, Kormanec J (2015) Utilization of a reporter system based on the blue pigment indigoidine biosynthetic gene bpsA for detection of promoter activity and deletion of genes in Streptomyces. J Microbiol Methods 113:1–3

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107(6):2646–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhstoss S, Richardson MA, Rao RN (1989) Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2. J Bacteriol 171:16–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhstoss S, Richardson MA, Rao RN (1991) Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 97:143–146

    Article  CAS  PubMed  Google Scholar 

  • Labes G, Bibb M, Wohlleben W (1997) Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn 1696 as reporter. Microbiology 143(Pt 5):1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Lam ET, Hastie A, Lin C et al (2012) Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol 30:771–776

    Article  CAS  PubMed  Google Scholar 

  • Lampel JS, Aphale JS, Lampel KA, Strohl WR (1992) Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326. J Bacteriol 174(9):2797–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson JL, Hershberger CL (1984) Shuttle vectors for cloning recombinant DNA in Escherichia coli and Streptomyces griseofuscus C581. J Bacteriol 157(1):314–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson JL, Hershberger CL (1986) The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 15(3):199–209

    Article  CAS  PubMed  Google Scholar 

  • Laver T, Harrison J, O'Neill PA et al (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 3:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibig M, Krismer B, Kolb M, Friede A, Götz F, Bertram R (2008) Marker removal in staphylococci via Cre recombinase and different lox sites. Appl Environ Microbiol 74(5):1316–1323

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhou X, Deng Z (2003) Vector systems allowing efficient autonomous or integrative gene cloning in Micromonospora sp. strain 40027. Appl Environ Microbiol 69:3144–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Guo J, Wen Y, Chen Z, Song Y, Li J (2010) Overexpression of ribosome recycling factor causes increased production of avermectin in Streptomyces avermitilis strains. J Ind Microbiol Biotechnol 37(7):673–679

    Article  CAS  PubMed  Google Scholar 

  • Lin YS, Kieser HM, Hopwood DA, Chen CW (1993) The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10(5):923–933

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Jiang H, Haltli B, Kulowski K, Muszynska E, Feng X, Summers M, Young M, Graziani E, Koehn F, Carter GT, He M (2009) Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-streptomyces artificial chromosome vector, pSBAC. J Nat Prod 72(3):389–395

    Article  CAS  PubMed  Google Scholar 

  • Liu G, HY O, Wang T et al (2010) Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA. PLoS Genet 6:e1001253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loman NJ, Constantinidou C, Chan JZ et al (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10:599–606

    Article  CAS  PubMed  Google Scholar 

  • Lomovskaya ND, Emeijanova LK, Alikhanian SI (1971) The genetic location of prophage on the chromosome of Streptomyces coelicolor. Genetics 68(3):341–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopatniuk M, Ostash B, Makitrynskyy R, Walker S, Luzhetskyy A, Fedorenko V (2015) Testing the utility of site-specific recombinases for manipulations of genome of moenomycin producer Streptomyces ghanaensis ATCC14672. J Appl Genet 56(4):547–450

    Article  CAS  PubMed  Google Scholar 

  • Lussier FX, Denis F, Shareck F (2010) Adaptation of the highly productive T7 expression system to Streptomyces lividans. Appl Environ Microbiol 76(3):967–970

    Article  CAS  PubMed  Google Scholar 

  • Magdevska V, Gaber R, Goranovič D et al (2010) Robust reporter system based on chalcone synthase rppA gene from Saccharopolyspora erythraea. J Microbiol Methods 83(2):111–119

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Kang KH, Sivakumar K, Li-Chan EC, Oh HM, Kim SK (2014) Marine actinobacteria: an important source of bioactive natural products. Environ Toxicol Pharmacol 38(1):172–188

    Article  CAS  PubMed  Google Scholar 

  • Mardis E (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto, Calif) 6:287–303

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushima P, McHenney MA, Baltz RH (1987) Efficient transformation of Amycolatopsis orientalis (Nocardia orientalis) protoplasts by Streptomyces plasmids. J Bacteriol 169(5):2298–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick JR, Flärdh K (2012) Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36:206–231

    Article  CAS  PubMed  Google Scholar 

  • Medema MH, Trefzer A, Kovalchuk A et al (2010) The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2:212–224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao V, Coeffet-LeGal M-F, Brian P et al (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151:1507–1523

    Article  CAS  PubMed  Google Scholar 

  • Mondou F, Shareck F, Morosoli R, Kluepfel D (1986) Cloning of the xylanase gene of Streptomyces lividans. Gene 49(3):323–329

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Yamamoto T, Fusada N et al (2009) The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett 297(2):234–240

    Article  CAS  PubMed  Google Scholar 

  • Murakami KS, Darst SA (2003) Bacterial RNA polymerases: the whole story. Curr Opin Struct Biol 13(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Myronovskyi M, Luzhetskyy A (2013) Genome engineering in actinomycetes using site-specific recombinases. Appl Microbiol Biotechnol 97(11):4701–4712

    Article  CAS  PubMed  Google Scholar 

  • Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A (2011) Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77(15):5370–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myronovskyi M, Tokovenko B, Manderscheid N, Petzke L, Luzhetskyy A (2013) Complete genome sequence of Streptomyces fulvissimus. J Biotechnol 168:117–118

    Article  CAS  PubMed  Google Scholar 

  • Myronovskyi M, Rosenkränzer B, Luzhetskyy A (2014) Iterative marker excision system. Appl Microbiol Biotechnol 98(10):4557–4570

    Article  CAS  PubMed  Google Scholar 

  • Myronovskyi M, Brötz E, Rosenkränzer B, Manderscheid N, Tokovenko B, Rebets Y, Luzhetskyy A (2016) Generation of new compounds through unbalanced transcription of landomycin A cluster. Appl Microbiol Biotechnol 100(21):9175–9186

    Google Scholar 

  • Myronovskyy M, Ostash B, Ostash I, Fedorenko V (2009) A gene cloning system for the siomycin producer Streptomyces sioyaensisNRRL-B5408. Folia Microbiol (Praha) 54(2):91–96

    Article  CAS  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109

    Article  CAS  PubMed  Google Scholar 

  • Nah HJ, Woo MW, Choi SS, Kim ES (2015) Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb Cell Factories 14:140

    Article  CAS  Google Scholar 

  • Nguyen KD, Au-Young SH, Nodwell JR (2007) Monomeric red fluorescent protein as a reporter for macromolecular localization in Streptomyces coelicolor. Plasmid 58(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Novakova R, Kutas P, Feckova L, Kormanec J (2010) The role of the TetR-family transcriptional regulator Aur1R in negative regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology 156:2374–2383

    Article  CAS  PubMed  Google Scholar 

  • Novakova R, Rehakova A, Feckova L, Kutas P, Knischova R, Kormanec J (2011) Genetic manipulation of pathway regulation for overproduction of angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239. Folia Microbiol (Praha) 56(3):276–282

    Article  CAS  Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H et al (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliynyk M, Samborskyy M, Lester JB et al (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 4:447–453

    Article  CAS  Google Scholar 

  • Omura S, Ikeda H, Ishikawa J et al (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98(21):12215–12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostash B, Doud EH, Lin C et al (2009) Complete characterization of the seventeen step moenomycin biosynthetic pathway. Biochemist 48(37):8830–8841

    Article  CAS  Google Scholar 

  • Ostash B, Ostash I, Horbal L, Fedorenko V (2012) Exploring and exploiting gene networks that regulate natural products biosynthesis in actinobacteria. Nat Prod J 3(3):189–198

    Google Scholar 

  • Ostash B, Yushchuk O, Tistechok S et al (2015) The adpA-like regulatory gene from Actinoplanes teichomyceticus: in silico analysis and heterologous expression. World J Microbiol Biotechnol 31(8):1297–1301

    Article  CAS  PubMed  Google Scholar 

  • Paget MS, Hintermann G, Smith CP (1994) Construction and application of streptomycete promoter probe vectors which employ the Streptomyces glaucescens tyrosinase-encoding gene as reporter. Gene 146(1):105–110

    Google Scholar 

  • Pastwa E, Błasiak J (2003) Non-homologous DNA end joining. Acta Biochim Pol 50(4):891–908

    CAS  PubMed  Google Scholar 

  • Pelicic V, Reyrat JM, Gicquel B (1996) Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178(4):1197–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petzke L, Luzhetskyy A (2009) In vivo Tn5-based transposon mutagenesis of Streptomycetes. Appl Microbiol Biotechnol 83(5):979–986

    Google Scholar 

  • Pidcock KA, Montenecourt BS, Sands JA (1985) Genetic recombination and transformation in protoplasts of Thermomonospora fusca. Appl Environ Microbiol 50(3):693–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23(8):967–973

    Article  CAS  PubMed  Google Scholar 

  • Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of ion torrent, Pacific biosciences and illumina MiSeq sequencers. Genomics 13:341. doi:10.1186/1471-2164-13-341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raynal A, Karray F, Tuphile K, Darbon-Rongère E, Pernodet JL (2006) Excisable cassettes: new tools for functional analysis of Streptomyces genomes. Appl Environ Microbiol 72(7):4839–4844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebets Y, Ostash B, Luzhetskyy A et al (2005) DNA-binding activity of LndI protein and temporal expression of the gene that upregulates landomycin E production in Streptomyces globisporus 1912. Microbiology 151(Pt 1):281–290

    Article  CAS  PubMed  Google Scholar 

  • Rebets Y, Brötz E, Tokovenko B, Luzhetskyy A (2014a) Actinomycetes biosynthetic potential: how to bridge in silico and in vivo? J Ind Microbiol Biotechnol 41(2):387–402

    Article  CAS  PubMed  Google Scholar 

  • Rebets Y, Tokovenko B, Lushchyk I et al (2014b) Complete genome sequence of producer of the glycopeptide antibiotic Aculeximycin Kutzneria albida DSM 43870T, a representative of minor genus of Pseudonocardiaceae. BMC Genomics 15:885

    Article  PubMed  PubMed Central  Google Scholar 

  • Redenbach M, Scheel J, Schmidt U (2000) Chromosome topology and genome size of selected actinomycetes species. Antonie Van Leeuwenhoek 78(3–4):227–235

    Article  CAS  PubMed  Google Scholar 

  • Reeves AR, Post DA, Vanden Boom TJ (1998) Physical-genetic map of the erythromycin-producing organism Saccharopolyspora erythraea. Microbiology 144(Pt 8):2151–2159

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-García A, Combes P, Pérez-Redondo R, Smith MC, Smith MC (2005) Natural and synthetic tetracycline-inducible promoters for use in the antibiotic producing bacteria Streptomyces. Nucleic Acids Res 33(9):e87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose K, Steinbüchel A (2002) Construction and intergeneric conjugative transfer of a pSG5-based cosmid vector from Escherichia coli to the polyisoprene rubber degrading strain Micromonospora aurantiaca W2b. FEMS Microbiol Lett 211(2):129–132

    Article  CAS  PubMed  Google Scholar 

  • Rückert C, Szczepanowski R, Albersmeier A et al (2014) Complete genome sequence of the actinobacterium Actinoplanes friuliensis HAG010964, producer of the lipopeptide antibiotic friulimycin. J Biotechnol 178:41–42

    Article  PubMed  CAS  Google Scholar 

  • Rudolph MM, Vockenhuber MP, Suess B (2013) Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology 159:1416–1422

    Article  CAS  PubMed  Google Scholar 

  • Sadowski PD (1995) The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 51:53–91

    Article  CAS  PubMed  Google Scholar 

  • Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32(20):6086–6095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauer AT, Nelson AD, Daniel JB (1991) Tn4563 transposition in Streptomyces coelicolor and its application to isolation of new morphological mutants. J Bacteriol 173(16):5060–5067

    Google Scholar 

  • Schauer A, Ranes M, Santamaria R et al (1988) Visualizing gene expression in time and space in the filamentous bacterium Streptomyces coelicolor. Science 240(4853):768–772

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-John T, Engels JW (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36(4):493–498

    Article  CAS  PubMed  Google Scholar 

  • Schweizer HP (2003) Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics. J Mol Microbiol Biotechnol 5:67–77

    Article  CAS  PubMed  Google Scholar 

  • Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ (2011) The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biotechnol 90(2):615–623

    Article  CAS  PubMed  Google Scholar 

  • Sekurova ON, Brautaset T, Sletta H et al (2004) In Vivo Analysis of the Regulatory Genes in the Nystatin Biosynthetic Gene Cluster of Streptomyces noursei ATCC 11455 reveals their Differential Control over Antibiotic Biosynthesis. J Bacteriol 186(5):1345–1354

    Google Scholar 

  • Sezonov G, Hagège J, Pernodet JL, Friedmann A, Guérineau M (1995) Characterization of pra, a gene for replication control in pSAM2, the integrating element of Streptomyces ambofaciens. Mol Microbiol 17(3):533–544

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Huang JJ, Yu Y, Li MX, Pu T, Kan SD, Chen DJ (2014) Improvement of 7α-methoxycephalosporins production by overexpression of cmcJ and cmcI controlled by promoter ermEp* in Streptomyces clavuligerus. J Appl Microbiol 117(6):1645–1654

    Article  CAS  PubMed  Google Scholar 

  • Siegl T, Luzhetskyy A (2012) Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek 102(3):503–516

    Article  CAS  PubMed  Google Scholar 

  • Siegl T, Petzke L, Welle E, Luzhetskyy A (2010) I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in streptomyces. Appl Microbiol Biotechnol 87(4):1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library forfine-tuned gene expression in actinomycetes. Metab Eng 19:98–106

    Article  CAS  PubMed  Google Scholar 

  • Smokvina T, Mazodier P, Boccard F, Thompson CJ, Guérineau M (1990) Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Sohaskey CD, Im H, Schauer AT (1992) Construction and application of plasmid- and transposon-based promoter-probe vectors for Streptomyces spp. that employ a Vibrio harveyi luciferase reporter cassette. J Bacteriol 174(2):367–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solenberg PJ, Baltz RH (1991) Transposition of Tn5096 and other IS493 derivatives in Streptomyces griseofuscus. J Bacteriol 173(3):1096–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosio M, Giusino F, Cappellano C, Bossi E, Puglia AM, Donadio S (2000) Artificial chromosomes for antibiotic-producing actinomycetes. Nat Biotechnol 18(3):343–345

    Article  CAS  PubMed  Google Scholar 

  • Stegmann E, Albersmeier A, Spohn M et al (2014) Complete genome sequence of the actinobacterium Amycolatopsis japonica MG417-CF17(T) (=DSM 44213T) producing (S,S)-N,N'-ethylenediaminedisuccinic acid. J Biotechnol 189:46–47

    Article  CAS  PubMed  Google Scholar 

  • Steiniger M, Metzler J, Reznikoff WS (2006) Mutation of Tn5 transposase beta-loop residues affects all steps of Tn transposition: the role of conformational changes in Tn5 transposition. Biochemist 45(51):15552–15562

    Article  CAS  Google Scholar 

  • Sternberg N (1990a) Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci U S A 87(1):103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg NL (1990b) Alternatives to YACs. Genet Anal Tech Appl 7(5):126–132

    Article  CAS  PubMed  Google Scholar 

  • Stinchi S, Azimonti S, Donadio S, Sosio M (2003) A gene transfer system for the glycopeptide producer Nonomuraea sp. ATCC39727. FEMS Microbiol Lett 225(1):53–57

    Article  CAS  PubMed  Google Scholar 

  • Strohl WR (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20(5):961–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1):113–130

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Kelemen GH, Fernández-Abalos JM, Bibb MJ (1999) Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145:2221–2227

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhou X, Liu J et al (2002) ‘Streptomyces nanchangensis’, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology 148:361–371

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005) New Multiple-Deletion Method for the Corynebacterium glutamicum Genome, Using a Mutant lox Sequence. Appl Environ Microbiol71(12):8472–8480

    Google Scholar 

  • Takano E, White J, Thompson CJ, Bibb MJ (1995) Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166(1):133–137

    Article  CAS  PubMed  Google Scholar 

  • Temme K, Hill R, Segall-Shapiro TH, Moser F, Voigt CA (2012) Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res 40(17):8773–8781. Epub 2012 Jun 28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetzlav CN, You Z, Cane DE, Takamatzu S, Êmura S, Ikeda H (2006) A gene cluster for biosynthesis of the sequiterpine antibiotic pentalenolactone in Streptomyces avermitilis. Biochemist 45:6179–6186

    Article  CAS  Google Scholar 

  • Tokovenko B, Rebets YU, Luzhetskyy A (2016) Automating assessment of the undiscovered biosynthetic potential of Actinobacteria. doi:10.1101/036087

  • Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4(9):1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Truman AW, Fan Q, Röttgen M, Stegmann E, Leadlay PF, Spencer JB (2008) The role of cep15 in the biosynthesis of chloroeremomycin: reactivation of an ancestral catalytic function. Chem Biol 15(5):476–484

    Article  CAS  PubMed  Google Scholar 

  • Van Mellaert L, Mei L, Lammertyn E, Schacht S, Anné J (1998) Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. Microbiology 144(Pt 12):3351–3358

    Article  PubMed  Google Scholar 

  • Voeykova T, Emelyanova L, Tabakov V, Mkrtumyan N (1998) Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation. FEMS Microbiol Lett 162(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Volff JN, Altenbuchner J (1997) High frequency transposition of the Tn5 derivative Tn5493 in Streptomyces lividans. Gene 194:81–86

    Article  CAS  PubMed  Google Scholar 

  • Wagner N, Osswald C, Biener R, Schwartz D (2009) Comparative analysis of transcriptional activities of heterologous promoters in the rare actinomycete Actinoplanes friuliensis. J Biotechnol 142(3–4):200–204

    Article  CAS  PubMed  Google Scholar 

  • Wang SB, Cantlay S, Nordberg N, Letek M, Gil JA, Flärdh K (2009) Domains involved in the in vivo function and oligomerization of apical growth determinant DivIVA in Streptomyces coelicolor. FEMS Microbiol Lett 297:101–109

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Yan YJ, Zhang B et al (2010) Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis. J Bacteriol 192(17):4526–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Li X, Wang J, Xiang S, Feng X, Yang K (2013) An engineered strong promoter for streptomycetes. Appl Environ Microbiol 79(14):4484–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Yang T, Li Y et al (2016) Development of a synthetic oxytetracycline-inducible expression system for Streptomycetes using de novo characterized genetic parts. ACS Synth Biol 5(7):765–773

    Article  PubMed  CAS  Google Scholar 

  • Weaden J, Dyson P (1998) Transposon mutagenesis with IS6100 in the avermectin-producer Streptomyces avermitilis. Microbiology 144(Pt 7):1963–1970

    Article  CAS  PubMed  Google Scholar 

  • Wehmeier UF (1995) New multifunctional Escherichia coli-Streptomyces shuttle vectors allowing blue-white screening on XGal plates. Gene 165(1):149–150

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Qu S, Lu C et al (2012) Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics 13:337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Li W, Tian Y, Liu G, Tan H (2007) Identification and characterization of sawC, a whiA-like gene, essential for sporulation in Streptomyces ansochromogenes. Arch Microbiol 188(6):575–582

    Article  CAS  PubMed  Google Scholar 

  • Yamamura H, Ohnishi Y, Ishikawa J et al (2012) Complete genome sequence of the motile actinomycete Actinoplanes missouriensis 431(T) (= NBRC 102363(T)). Stand Genomic Sci 7(2):294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33(1):103–119

    Article  CAS  PubMed  Google Scholar 

  • Zaburannyi N, Rabyk M, Ostash B, Fedorenko V, Luzhetskyy A (2014) Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genomics 15:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Wen S, Xu W et al (2015) Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99(24):10575–10585

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Bao Y, Shi X, Ou X, Zhou P, Ding X (2012) Efficient transposition of IS204-derived plasmids in Streptomyces coelicolor. J Microbiol Methods 88(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Huang T, Chen W, Deng Z (2010a) Enhancement of the diversity of polyoxins by a thymine-7-hydroxylase homolog outside the polyoxin biosynthesis gene cluster. Appl Environ Microbiol 76:7343–7347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Zhong Y, Yuan H et al (2010b) Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Res 20(10):1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Zheng JT, Wang SL, Yang KQ (2007) Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae. Appl Microbiol Biotechnol 76(4):883–888

    Article  CAS  PubMed  Google Scholar 

  • Zotchev S, Haugan K, Sekurova O, Sletta H, Ellingsen TE, Valla S (2000) Identification of a gene cluster for antibacterial polyketide-derived antibiotic biosynthesis in the nystatin producer Streptomyces noursei ATCC 11455. Microbiology 146(Pt 3):611–619

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The research work in the laboratory of Andriy Luzhetskyy was supported by the European Commission under the 7th Framework Program through the “Collaborative Project” action “STREPSYNTH” grant No. 613877 and through the ERC starting grant EXPLOGEN No. 281623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzhetskyy Andriy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lilya, H., Andriy, L. (2017). The Genetic System of Actinobacteria. In: Wink, J., Mohammadipanah, F., Hamedi, J. (eds) Biology and Biotechnology of Actinobacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-60339-1_5

Download citation

Publish with us

Policies and ethics