Skip to main content

Growth and Life Cycle of Actinobacteria

  • Chapter
  • First Online:
Biology and Biotechnology of Actinobacteria

Abstract

Since actinobacteria inhabit a vast range of ecological niches, their life cycle and growth dynamics have been evolved while acquiring different strategies for efficient survival. Of these differentiation strategies, spore (better to be called conidium due to their reproductive nature) formation in actinomycetes, the formation of resting cells discussed earlier in Chap. 5, or the complex cell envelope of Corynebacteriaceae and Mycobacteriaceae to produce more resistant forms of vegetative cells can be named. Accordingly, one of the most well-studied bacteria within the taxon is the filamentous actinobacteria (i.e., Streptomyces) for whom the exact true life cycle is presented and the dynamics are well elucidated. However, much more efforts regarding the growth dynamics of other members of actinobacteria are required to fulfill our interest of having a comprehensive insight of their physiology of growth and cell division. Herein, the available data together with recent studies on the growth and differentiation of these bacteria are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A dynamic multiprotein assembly localizing at mid-cell to synthesize the stress-bearing peptidoglycan and to constrict all cell envelope layers

  2. 2.

    The process in which a plasma membrane forms in the mid-cell region of a mother cell during cell division

References

  • Ainsa J, Ryding N, Hartley N, Findlay K, Bruton C, Chater K (2000) WhiA, a protein of unknown function conserved among gram-positive bacteria, is essential for sporulation in Streptomyces coelicolor A3 (2). J Bacteriol 182(19):5470–5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso A, Pomposiello P, Leschine S (2008) Biofilm formation in the life cycle of the cellulolytic actinomycete Thermobifida fusca. Biofilms 2008:1–11

    Article  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P et al (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43

    Article  PubMed  Google Scholar 

  • Burger A, Sichler K, Kelemen G, Buttner M, Wohlleben W (2000) Identification and characterization of the mre gene region of Streptomyces coelicolor A3 (2). Mol Gen Genet MGG 263(6):1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Bush MJ, Bibb MJ, Chandra G, Findlay KC, Buttner MJ (2013) Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. MBio 4(5):e00684–e00613

    Article  PubMed  PubMed Central  Google Scholar 

  • Capstick DS, Willey JM, Buttner MJ, Elliot MA (2007) SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Mol Microbiol 64(3):602–613

    Article  CAS  PubMed  Google Scholar 

  • Chater K (1975) Construction and phenotypes of double sporulation deficient mutants in Streptomyces coelicolor A3 (2). Microbiology 87(2):312–325

    CAS  Google Scholar 

  • Chater KF, Chandra G (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30(5):651–672

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FH et al (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17(14):1714–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claessen D, Stokroos I, Deelstra HJ, Penninga NA, Bormann C, Salas JA et al (2004) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53(2):433–443

    Article  CAS  PubMed  Google Scholar 

  • D'Alia D, Eggle D, Nieselt K, Hu WS, Breitling R, Takano E (2011) Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3 (2). Microb Biotechnol 4(2):239–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalton KA, Thibessard A, Hunter JI, Kelemen GH (2007) A novel compartment, the ‘subapical stem’ of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor. Mol Microbiol 64(3):719–737

    Article  CAS  PubMed  Google Scholar 

  • Daza A, Martin JF, Dominguez A, Gil JA (1989) Sporulation of several species of Streptomyces in submerged cultures after nutritional downshift. Microbiology 135(9):2483–2491

    Article  CAS  Google Scholar 

  • Dedrick RM, Wildschutte H, McCormick JR (2009) Genetic interactions of smc, ftsK, and parB genes in Streptomyces coelicolor and their developmental genome segregation phenotypes. J Bacteriol 191(1):320–332

    Article  CAS  PubMed  Google Scholar 

  • Di Berardo C, Capstick DS, Bibb MJ, Findlay KC, Buttner MJ, Elliot MA (2008) Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J Bacteriol 190(17):5879–5889

    Article  PubMed  PubMed Central  Google Scholar 

  • Ditkowski B, Holmes N, Rydzak J, Donczew M, Bezulska M, Ginda K et al (2013) Dynamic interplay of ParA with the polarity protein, Scy, coordinates the growth with chromosome segregation in Streptomyces coelicolor. Open biology 3(3):130006

    Article  PubMed  PubMed Central  Google Scholar 

  • Donczew M, Mackiewicz P, Wróbel A, Flärdh K, Zakrzewska-Czerwińska J, Jakimowicz D (2016) ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation. Open biology 6(4):150263

    Article  PubMed  PubMed Central  Google Scholar 

  • Donovan C, Bramkamp M (2014) Cell division in Corynebacterineae. Front Microbiol 5:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekkers DM, Claessen D, Galli F, Stamhuis E (2014) Surface modification using interfacial assembly of the Streptomyces chaplin proteins. Appl Microbiol Biotechnol 98(10):4491–4501

    Article  CAS  PubMed  Google Scholar 

  • Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17(14):1727–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errington J, Daniel RA, Scheffers D-J (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67(1):52–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7(1):36–49

    Article  PubMed  Google Scholar 

  • Flärdh K, Findlay KC, Chater KF (1999) Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3 (2). Microbiology 145(9):2229–2243

    Article  PubMed  Google Scholar 

  • Flärdh K, Richards DM, Hempel AM, Howard M, Buttner MJ (2012) Regulation of apical growth and hyphal branching in Streptomyces. Curr Opin Microbiol 15(6):737–743

    Article  PubMed  Google Scholar 

  • Fuhrmann C, Soedarmanto I, Lämmler C (1997) Studies on the Rod-Coccus life cycle of Rhodococcus equi. J Veterinary Med Ser B 44(1–10):287–294

    Article  CAS  Google Scholar 

  • Glazebrook MA, Doull JL, Stuttard C, Vining LC (1990) Sporulation of Streptomyces venezuelae in submerged cultures. Microbiology 136(3):581–588

    CAS  Google Scholar 

  • Goodfellow M, Alderson G, Chun J (1998) Rhodococcal systematics: problems and developments. Antonie Van Leeuwenhoek 74(1–3):3–20

    Article  CAS  PubMed  Google Scholar 

  • Gray D, Gooday G, Prosser J (1990) Apical hyphal extension in Streptomyces coelicolor A3 (2). Microbiology 136(6):1077–1084

    CAS  Google Scholar 

  • Haiser HJ, Yousef MR, Elliot MA (2009) Cell wall hydrolases affect germination, vegetative growth, and sporulation in Streptomyces coelicolor. J Bacteriol 191(21):6501–6512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halbedel S, Visser L, Shaw M, Wu LJ, Errington J, Marenduzzo D, Hamoen LW (2009) Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28(15):2272–2282

    Article  PubMed  PubMed Central  Google Scholar 

  • Heichlinger A, Ammelburg M, Kleinschnitz E-M, Latus A, Maldener I, Flärdh K et al (2011) The MreB-like protein Mbl of Streptomyces coelicolor A3 (2) depends on MreB for proper localization and contributes to spore wall synthesis. J Bacteriol 193(7):1533–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hett EC, Rubin EJ (2008) Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 72(1):126–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopwood DA, Wildermuth H, Palmer HM (1970) Mutants of Streptomyces coelicolor defective in sporulation. Microbiology 61(3):397–408

    CAS  Google Scholar 

  • Jakimowicz D, van Wezel GP (2012) Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol Microbiol 85(3):393–404

    Article  CAS  PubMed  Google Scholar 

  • Joyce G, Williams KJ, Robb M, Noens E, Tizzano B, Shahrezaei V, Robertson BD (2012) Cell division site placement and asymmetric growth in mycobacteria. PLoS One 7(9):e44582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jyothikumar V, Tilley EJ, Wali R, Herron PR (2008) Time-lapse microscopy of Streptomyces coelicolor growth and sporulation. Appl Environ Microbiol 74(21):6774–6781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalakoutskii L, Agre NS (1976) Comparative aspects of development and differentiation in actinomycetes. Bacteriol Rev 40(2):469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang C-M, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN (2005) The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19(14):1692–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang C-M, Nyayapathy S, Lee J-Y, Suh J-W, Husson RN (2008) Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154(3):725–735

    Article  CAS  PubMed  Google Scholar 

  • Kaval KG, Halbedel S (2012) Architecturally the same, but playing a different game: the diverse species-specific roles of DivIVA proteins. Virulence 3(4):406–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Kieser KJ, Rubin EJ (2014) How sisters grow apart: mycobacterial growth and division. Nat Rev Microbiol 12(8):550–562

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Traag BA, Hasan AH, McDowall KJ, Kim B-G, van Wezel GP (2015) Transcriptional analysis of the cell division-related ssg genes in Streptomyces coelicolor reveals direct control of ssgR by AtrA. Antonie Van Leeuwenhoek 108(1):201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinschnitz EM, Heichlinger A, Schirner K, Winkler J, Latus A, Maldener I et al (2011) Proteins encoded by the MRE gene cluster in Streptomyces coelicolor A3 (2) cooperate in spore wall synthesis. Mol Microbiol 79(5):1367–1379

    Article  CAS  PubMed  Google Scholar 

  • Kontro M, Lignell U, Hirvonen MR, Nevalainen A (2005) pH effects on 10 Streptomyces spp. growth and sporulation depend on nutrients. Lett Appl Microbiol 41(1):32–38

    Article  CAS  PubMed  Google Scholar 

  • Kontroab M, Lignella U, Hyvärinena A, Vahteristoa M, Hirvonena M, Nevalainena A (2007) Nutrient effects on ten Streptomyces spp. sporulation, in Communicating Current Research nd Educational Topics and Trends in Applied Microbiology. Formatex 137–142

    Google Scholar 

  • Kwak J, Dharmatilake AJ, Jiang H, Kendrick KE (2001) Differential regulation of ftsZ Transcription during septation of streptomyces griseus. J Bacteriol 183(17):5092–5101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manteca A, Sanchez J (2010) Streptomyces developmental cycle and secondary metabolite production. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 1:560–566

    Google Scholar 

  • Mazza P, Noens EE, Schirner K, Grantcharova N, Mommaas AM, Koerten HK et al (2006) MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol Microbiol 60(4):838–852

    Article  CAS  PubMed  Google Scholar 

  • McCormick JR (2009) Cell division is dispensable but not irrelevant in Streptomyces. Curr Opin Microbiol 12(6):689–698

    Article  CAS  PubMed  Google Scholar 

  • McCormick JR, Flärdh K (2012) Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36(1):206–231

    Article  CAS  PubMed  Google Scholar 

  • Mendez C, Chater KF (1987) Cloning of whiG, a gene critical for sporulation of Streptomyces coelicolor A3 (2). J Bacteriol 169(12):5715–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguélez EM, Martín C, Manzanal MB, Hardisson C (1992) Growth and morphogenesis in Streptomyces. FEMS Microbiol Lett 100(1–3):351–359

    Article  PubMed  Google Scholar 

  • Molle V, Palframan WJ, Findlay KC, Buttner MJ (2000) WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3 (2). J Bacteriol 182(5):1286–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noens EE, Mersinias V, Traag BA, Smith CP, Koerten HK, van Wezel GP (2005) SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol Microbiol 58(4):929–944

    Article  CAS  PubMed  Google Scholar 

  • Palazzotto E, Renzone G, Fontana P, Botta L, Scaloni A, Puglia AM, Gallo G (2015) Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor. Appl Microbiol Biotechnol 99(23):10177–10189

    Article  CAS  PubMed  Google Scholar 

  • Pérez J, Muñoz-Dorado J, Braña AF, Shimkets LJ, Sevillano L, Santamaría RI (2011) Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor. Microb Biotechnol 4(2):175–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Santi I, Dhar N, Bousbaine D, Wakamoto Y, McKinney JD (2013) Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nat Commun 4:2470

    PubMed  Google Scholar 

  • Scherr N, Nguyen L (2009) Mycobacterium versus Streptomyces—we are different, we are the same. Curr Opin Microbiol 12(6):699–707

    Article  CAS  PubMed  Google Scholar 

  • Schwedock J, McCormick J, Angert E, Nodwell J, Losick R (1997) Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol Microbiol 25(5):847–858

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Nitharwal RG, Ramesh M, Pettersson B, Kirsebom LA, Dasgupta S (2013) Asymmetric growth and division in Mycobacterium spp.: compensatory mechanisms for non-medial septa. Mol Microbiol 88(1):64–76

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Tian Y, Yang H, Liu G, Nie L (2002) A novel Streptomyces gene, samR, with different effects on differentiation of Streptomyces ansochromogenes and Streptomyces coelicolor. Arch Microbiol 177(3):274–278

    Article  CAS  PubMed  Google Scholar 

  • Traag BA, van Wezel GP (2008) The SsgA-like proteins in actinomycetes: small proteins up to a big task. Antonie Van Leeuwenhoek 94(1):85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S-B, Cantlay S, Nordberg N, Letek M, Gil JA, Flärdh K (2009) Domains involved in the in vivo function and oligomerization of apical growth determinant DivIVA in Streptomyces coelicolor. FEMS Microbiol Lett 297(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • White EL, Ross LJ, Reynolds RC, Seitz LE, Moore GD, Borhani DW (2000) Slow polymerization of Mycobacterium tuberculosis FtsZ. J Bacteriol 182(14):4028–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildermuth H, Hopwood D (1970) Septation during sporulation in Streptomyces coelicolor. Microbiology 60(1):51–59

    CAS  Google Scholar 

  • Willemse J, Borst JW, de Waal E, Bisseling T, van Wezel GP (2011) Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25(1):89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagüe P, López-García MT, Rioseras B, Sánchez J, Manteca Á (2013) Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives. FEMS Microbiol Lett 342(2):79–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Willemse J, Claessen D, van Wezel GP (2016) SepG coordinates sporulation-specific cell division and nucleoid organization in Streptomyces coelicolor. Open biology 6(4):150164

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hamedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hamedi, J., Poorinmohammad, N., Papiran, R. (2017). Growth and Life Cycle of Actinobacteria. In: Wink, J., Mohammadipanah, F., Hamedi, J. (eds) Biology and Biotechnology of Actinobacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-60339-1_3

Download citation

Publish with us

Policies and ethics