Skip to main content

The Role of Actinobacteria in Biotechnology

  • Chapter
  • First Online:
Biology and Biotechnology of Actinobacteria

Abstract

Microbial biotechnology, as a pioneering knowledge of producing goods and services from microorganisms and their parts or products, has paved a long way of history. From the very early production of cheese and beverage without the knowledge of its bio-based mechanism in the onset of civilization in fertile crescent (about 10,000 years ago) and later the classical microbial fermentation technology in Europe (19th century) where microorganisms where consciously implemented, to the revolutionary introduction of recombinant DNA technology in the United States of America (20th century), microbial biotechnology has shown its great potential in different sections. Accordingly, this chapter tries to comprehensively summarize the current major issues and trends in the field of actinobacterial biotechnology and their potential roles in biotechnological potencies and productions to give an appropriate overview of their applied potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramić M, Leščić I, Korica T, Vitale L, Saenger W, Pigac J (1999) Purification and properties of extracellular lipase from Streptomyces rimosus. Enzym Microb Technol 25(6):522–529

    Article  Google Scholar 

  • Aftabuddin S, Kashem MA, Kader MA, Sikder M, Hakim MA (2013) Use of Streptomyces fradiae and Bacillus megaterium as probiotics in the experimental culture of tiger shrimp Penaeus monodon (Crustacea, Penaeidae). Aquacult Aquar Conserv Legislat 6(3):253

    Google Scholar 

  • Aharonowitz Y, Demain AL (1978) Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob Agents Chemother 14(2):159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19(8):3550–3553

    Article  CAS  Google Scholar 

  • Albarracín VH, Amoroso MJ, Abate CM (2010) Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 79(2):131–137

    Article  PubMed  CAS  Google Scholar 

  • Amoroso MJ, Castro GR, Carlino FJ, Romero NC, Hill RT, Oliver G (1998) Screening of heavy metal-tolerant actinomycetes isolated from the Sali River. J Gen Appl Microbiol 44(2):129–132

    Article  CAS  PubMed  Google Scholar 

  • Aoyagi T, Takeuchi T, Matsuzaki A, Kawamura K, Kondo S, Hamada M et al (1969) Leupeptins, new protease inhibitors from actinomycetes. J Antibiot 22(6):283–286

    Article  CAS  PubMed  Google Scholar 

  • Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C (1969) Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S. Peucetius var. caesius. Biotechnol Bioeng 11(6):1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Arya R, Sharma AK (2016) Bioremediation of Carbendazim, a Benzimidazole fungicide using Brevibacillus borstelensis and Streptomyces albogriseolus together. Curr Pharm Biotechnol 17(2):185–189

    Article  CAS  Google Scholar 

  • Arya R, Sharma R, Malhotra M, Kumar V, Sharma A (2015) Biodegradation aspects of carbendazim and sulfosulfuron: trends, scope and relevance. Curr Med Chem 22(9):1147–1155

    Article  CAS  Google Scholar 

  • Augustine D, Jacob JC, Philip R (2016) Exclusion of Vibrio spp. by an antagonistic marine actinomycete Streptomyces rubrolavendulae M56. Aquacul Res 47(9):2951–2960

    Google Scholar 

  • Balagurunathan R, Radhakrishnan M (2010) Biotechnological, genetic engineering and nanotechnological potential of actinomycetes. In: Maheshwari DK, Dubey RC, Saravanamuthu R (eds) Industrial exploitation of microorganisms. IK, New Delhi, pp 302–321

    Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48(5):331–335

    CAS  PubMed  Google Scholar 

  • Baltz RH (2006) Marcel Faber roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33(7):507–513

    Article  CAS  PubMed  Google Scholar 

  • Baltz RH (2007) Antimicrobials from actinomycetes: back to the future. Microbe 2(3):125

    Google Scholar 

  • Battersby AR, McDonald E, Thompson M, Williams DC, Morris HR, Bykhovsky VY et al (1977) Biosynthesis of vitamin B 12: structural studies on the corriphryins from Propionibacterium shermanii and the link with sirohydrochlorin. Tetrahedron Lett 18(25):2217–2220

    Article  Google Scholar 

  • Bavya M, Mohanapriya P, Pazhanimurugan R, Balagurunathan R (2011) Potential bioactive compound from marine actinomycetes against biofouling bacteria. Ind J Marine Sci 40(4):578

    CAS  Google Scholar 

  • Bennur T, Khan Z, Kshirsagar R, Javdekar V, Zinjarde S (2016) Biogenic gold nanoparticles from the Actinomycete Gordonia amarae: application in rapid sensing of copper ions. Sensors Actuators B Chem 233:684–690

    Article  CAS  Google Scholar 

  • Bérdy J (2015) Microorganisms producing antibiotics. In: Antibiotics: current innovations and future trends. Caister Academic Press, Norfolk, pp 49–64

    Chapter  Google Scholar 

  • Bernal MG, Campa-Córdova ÁI, Saucedo PE, González MC, Marrero RM, Mazón-Suástegui JM (2015) Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Vet World 8(2):170–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219(4):561–578

    Article  CAS  PubMed  Google Scholar 

  • Bhalla TC, Kumar H (2005) Nocardia globerula NHB-2: a versatile nitrile-degrading organism. Can J Microbiol 51(8):705–708

    Article  CAS  PubMed  Google Scholar 

  • Bickel H, Gäumann E, Nussberger G, Reussner P, Vischer E, Voser W, Wettstein A, Zähner H (1960). Stoffwechselprodukte von Actinomyceten. Über die Isolierung und Charakterisierung der Ferrimycine A1 und A2, neuer Antibiotika der Sideromycin-Gruppe. Helv Chim Acta 43:2105–2118

    Google Scholar 

  • Bickel H, Mertens P, Prelog V, Seibl J, Walser A. (1966) Stoffwechselprodukte von Mikroorganismen – 53. Über die Konstitution von Ferrimycin A1. Tetrahedron Suppl. 8:171–179

    Google Scholar 

  • Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79(3):471–479

    Article  CAS  PubMed  Google Scholar 

  • Bloomquist JR (1993) Toxicology, mode of action and target site-mediated resistance to insecticides acting on chloride channels. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 106(2):301–314

    CAS  Google Scholar 

  • Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41(1):163–190

    Article  CAS  PubMed  Google Scholar 

  • Bloomquist JR (2003) Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol 54(4):145–156

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3(7):619–627

    Article  CAS  PubMed  Google Scholar 

  • Brockmann H, Niemeyer J (1968) Die absolute konfiguration der anthracyclinone. Tetrahedron Lett 9(45):4719–4724

    Article  Google Scholar 

  • Broenstrup M, Koenig C, Toti L, Wink J, Leuschner W, Gassenhuber J et al (2012) Gene cluster for biosynthesis of griselimycin and methylgriselimycin. Google Patents

    Google Scholar 

  • Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R et al (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15(3):361–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: an overview. Int J Food Microbiol 133(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Butaye P, Devriese LA, Haesebrouck F (2003) Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin Microbiol Rev 16(2):175–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Chen Q, Wang H, He Y, Wang W, Zhao X, Ye Q (2012) Degradation of the novel herbicide ZJ0273 by Amycolatopsis sp. M3-1 isolated from soil. Appl Microbiol Biotechnol 96(5):1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Charney J, Fisher W, Curran C, Machlowitz R, Tytell A (1953) Streptogramin, a new antibiotic. Antibiot Chemother 3(12):1283

    CAS  Google Scholar 

  • Chaudhary P, Sharma R, Singh SB, Nain L (2011) Bioremediation of PAH by Streptomyces sp. Bull Environ Contam Toxicol 86(3):268–271

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. BioMed Res Int 2013:1–15

    Article  CAS  Google Scholar 

  • Chen C-Y, Huang Y-C, Wei C-M, Meng M, Liu W-H, Yang C-H (2013) Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express 3(1):1–9

    Article  CAS  Google Scholar 

  • Cho JY, Kim MS (2012) Induction of antifouling diterpene production by Streptomyces cinnabarinus PK209 in co-culture with marine-derived Alteromonas sp. KNS-16. Biosci Biotechnol Biochem 76(10):1849–1854

    Article  CAS  PubMed  Google Scholar 

  • Cho JY, Kang JY, Hong YK, Baek HH, Shin HW, Kim MS (2012) Isolation and structural determination of the antifouling diketopiperazines from marine-derived Streptomyces praecox 291-11. Biosci Biotechnol Biochem 76(6):1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocito C, Di Giambattista M, Nyssen E, Vannuffel P (1997) The molecular mechanism of action of streptogramins and related antibiotics. Infect Dis Ther Ser 21:145–172

    CAS  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29(3):359–366

    Article  Google Scholar 

  • Crawford D, Kowalski M, Roberts M, Merrell G, Deobald L (2005) Discovery, development, and commercialization of a microbial antifungal biocontrol agent, Streptomyces lydicus WYEC108: history of a decade long endeavor. Soc Ind Microbiol News 55:88–95

    Google Scholar 

  • Das S, Ward LR, Burke C (2008) Prospects of using marine actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol 81(3):419–429

    Article  CAS  PubMed  Google Scholar 

  • Davies J, Wright GD (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5(6):234–240

    Article  CAS  PubMed  Google Scholar 

  • Dehnad A, Hamedi J, Derakhshan-Khadivi F, Abuşov R (2015) Green synthesis of gold nanoparticles by a metal resistant Arthrobacter nitroguajacolicus isolated from gold mine. IEEE Trans Nanobioscience 14(4):393–396

    Article  PubMed  Google Scholar 

  • Dharmaraj S, Dhevendaran K (2010) Evaluation of Streptomyces as a probiotic feed for the growth of ornamental fish Xiphophorus helleri. Food Technol Biotechnol 48(4):497–504

    CAS  Google Scholar 

  • Di Marco A, Gaetani M, Orezzi P, Scarpinato B, Silvestrini R, Soldati M et al (1964) ‘Daunomycin’, a new antibiotic of the rhodomycin group. Nature 201:706–707

    Article  Google Scholar 

  • Díaz E (2008) Microbial biodegradation: genomics and molecular biology. Horizon Scientific Press, Norfolk

    Google Scholar 

  • Dibner J, Richards J (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84(4):634–643

    Article  CAS  PubMed  Google Scholar 

  • Dodd D, Cann IK (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1(1):2–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donova M (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Microbiol 43(1):1–14

    Article  CAS  Google Scholar 

  • Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94(6):1423–1447

    Article  CAS  PubMed  Google Scholar 

  • Donovick R, Gold W, Pagano J, Stout H (1954) Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu 3:579–586

    Google Scholar 

  • Doroghazi JR, Albright JC, Goering AW, Ju K-S, Haines RR, Tchalukov KA et al (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10(11):963–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droumev D (1983) Review of antimicrobial growth promoting agents available. Vet Res Commun 7(1):85–99

    Article  CAS  PubMed  Google Scholar 

  • Duggar BM (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann N Y Acad Sci 51(2):177–181

    Article  CAS  PubMed  Google Scholar 

  • Duke S, Dayan F, Romagni J, Rimando A (2000) Natural products as sources of herbicides: current status and future trends. Weed Res (Oxf) 40(1):99–112

    Article  CAS  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ehrlich J, Bartz QR, Smith RM, Joslyn DA (1947) Chloromycetin, a new antibiotic from a soil actinomycete. American Association for the Advancement of Science. Science 106(2757):417

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich J, Gottlieb D, Burkholder PR, Anderson LE, Pridham T (1948) Streptomyces venezuelae, n. sp., the source of chloromycetin. J Bacteriol 56(4):467

    PubMed Central  Google Scholar 

  • Eisenstein BI, Oleson FB, Baltz RH (2010) Daptomycin: from the mountain to the clinic, with essential help from Francis tally, MD. Clin Infect Dis 50(Suppl 1):S10–S15

    Article  CAS  PubMed  Google Scholar 

  • El Baz S, Baz M, Barakate M, Hassani L, El Gharmali A, Imziln B (2015) Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. Sci World J 2015:761834

    Google Scholar 

  • Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1(2):103–111

    Article  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38(7):1505–1520

    Article  CAS  Google Scholar 

  • Enger M, Sleeper B (1965) Multiple cellulase system from Streptomyces antibioticus. J Bacteriol 89(1):23–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fairbairn D, Priest F, Stark J (1986) Extracellular amylase synthesis by Streptomyces limosus. Enzym Microb Technol 8(2):89–92

    Article  CAS  Google Scholar 

  • Falentin H, Deutsch S-M, Jan G, Loux V, Thierry A, Parayre S et al (2010) The complete genome of Propionibacterium freudenreichii CIRM-BIA1 T, a hardy Actinobacterium with food and probiotic applications. PLoS One 5(7):e11748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferchak J, Pye E (1980) Saccharification of cellulose by the cellulolytic enzyme system of Thermomonospora species. I. Stability of cellulolytic activities with respect to time, temperature and pH. Biotechnol Bioeng 22:1515–1526

    Article  Google Scholar 

  • Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R et al (2013) The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One 8(5):e64010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes TAR, da Silveira WB, Passos FML, Zucchi TD (2014) Characterization of a thermotolerant laccase produced by Streptomyces sp. SB086. Ann Microbiol 64(3):1363–1369

    Article  CAS  Google Scholar 

  • Fiedler H-P, Walz F, Döhle A, Zähner H (1985) Albomycin: studies on fermentation, isolation and quantitative determination. Appl Microbiol Biotechnol 21(6):341–347

    Article  CAS  Google Scholar 

  • Finlay A, Hobby G, P'an S, Regna P, Routien J, Seeley D et al (1950) Terramycin, a new antibiotic. American Association for the Advancement of Science. Science 111:85–87

    Article  CAS  PubMed  Google Scholar 

  • Frost BM, Valiant M, Weissberger B, Dulaney E (1976) Antibacterial activity of efrotomycin. J Antibiot 29(10):1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Fu C, Keller L, Bauer A, Brönstrup M, Froidbise A, Hammann P et al (2015) Biosynthetic studies of telomycin reveal new lipopeptides with enhanced activity. J Am Chem Soc 137(24):7692–7705

    Article  CAS  PubMed  Google Scholar 

  • Fuentes MS, Alvarez A, Saez JM, Benimeli CS, Amoroso MJ (2014) Use of actinobacteria consortia to improve methoxychlor bioremediation in different contaminated matrices. In: Bioremediation in Latin America. Springer, Cham, pp 267–277

    Google Scholar 

  • Fujiwara A, Hoshino T, Westley JW (1985) Anthracycline antibiotics. Crit Rev Biotechnol 3(2):133–157

    Article  Google Scholar 

  • Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B (2005) Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem Rev 105(2):739–758

    Article  CAS  PubMed  Google Scholar 

  • Gause G (1955) Recent studies on albomycin, a new antibiotic. Br Med J 2(4949):1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gause GF, Brazhnikova MG (1951) Die Wirkung von Albomycin gegen Bakterien. Nov Med 23: 3–7

    Google Scholar 

  • Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13(3):245–255

    Article  CAS  PubMed  Google Scholar 

  • Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vicente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38(3):375–389

    Article  CAS  PubMed  Google Scholar 

  • Gessesse A, Gashe BA (1997) Production of alkaline protease by an alkaliphilic bacteria isolated from an alkaline soda lake. Biotechnol Lett 19(5):479–481

    Article  CAS  Google Scholar 

  • Gohel S, Singh S (2015) Thermodynamics of a Ca 2+-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete. Int J Biol Macromol 72:421–429

    Article  CAS  PubMed  Google Scholar 

  • Golik J, Clardy J, Dubay G, Groenewold G, Kawaguchi H, Konishi M et al (1987) Esperamicins, a novel class of potent antitumor antibiotics. 2. Structure of esperamicin X. J Am Chem Soc 109(11):3461–3462

    Article  CAS  Google Scholar 

  • Gopal JV, Thenmozhi M, Kannabiran K, Rajakumar G, Velayutham K, Rahuman AA (2013) Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Mater Lett 93:360–362

    Article  CAS  Google Scholar 

  • Gottlieb D, Bhattacharyya P, Anderson H, Carter H (1948) Some properties of an antibiotic obtained from a species of Streptomyces. J Bacteriol 55(3):409

    CAS  PubMed Central  Google Scholar 

  • Grein A, Spalla C, Dimarco A, Canevazzi G (1963) Descrizione e classificazione di un attinomicete (Streptomyces peucetius sp. nova) produttore di una sostanza ad attivita antitumorale-La Daunomicina. Giorn Microbiol 11(2):109–118

    Google Scholar 

  • Griesgraber G, Or YT, Chu DTW, Nilius AM, Johnson PM, Flamm RK et al (1996) 3-Keto-11, 12-carbazate derivatives of 6-0-methylerythromycin A synthesis and in vitro activity. J Antibiot 49(5):465–477

    Article  CAS  PubMed  Google Scholar 

  • Grundy W, Sinclair A, Theriault R, Goldstein A, Rickher C, Warren H Jr et al (1955) Ristocetin, microbiologic properties. Antibiot Annu 1956–1957:687–692

    Google Scholar 

  • Gurram SP, Rama P, Sivadevuni G, Solipuram MR (2009) Oxidation of meloxicam by Streptomyces griseus. Iran J Biotechnol 7(3):142–147

    CAS  Google Scholar 

  • Gusek TW, Kinsella JE (1987) Purification and characterization of the heat-stable serine proteinase from Thermomonospora fusca YX. Biochem J 246(2):511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M et al (2014) Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J Biosci Bioeng 117(4):413–421

    Article  CAS  PubMed  Google Scholar 

  • Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. In: Lignocellulose conversion. Springer, Berlin Heidelberg, pp 21–38

    Chapter  Google Scholar 

  • Haglund A-L, Törnblom E, Boström B, Tranvik L (2002) Large differences in the fraction of active bacteria in plankton, sediments, and biofilm. Microb Ecol 43(2):232–241

    Article  CAS  PubMed  Google Scholar 

  • Hall HH (1953) Method for the production of vitamin b12 by Streptomyces olivaceus. Google Patents

    Google Scholar 

  • Hamamoto T, Gunji S, Tsuji H, Beppu T (1983) Leptomycins A and B, new antifungal antibiotics. I. Taxonomy of the producing strain and their fermentation, purification and characterization. J Antibiot 36(6):639–645

    Article  CAS  PubMed  Google Scholar 

  • Hamedi J, Mohammadipanah F (2015) Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 42(2):157–171

    Article  CAS  PubMed  Google Scholar 

  • Hamedi J, Dehhaghi M, Mohammdipanah F (2015a) Isolation of extremely heavy metal resistant strains of rare actinomycetes from high metal content soils in Iran. Int J Environ Res 9(2):475–480

    CAS  Google Scholar 

  • Hamedi J, Moghimi H, Papiran R, Mohammadipanah F (2015b) Screening of phytotoxic activity and nlp genes from rhizosphere actinomycetes. Ann Microbiol 65(1):527–532

    Article  CAS  Google Scholar 

  • Hamill R, Haney M Jr, Stamper M, Wlley P (1961) Tylosin, a new antibiotic: II. Isolation, properties, and preparation of pesmycosin, a microbiologically active degradation product. Antibiot Chemother 11(5):328–334

    CAS  Google Scholar 

  • Haney ME Jr, Hoehn MM (1966) Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob Agents Chemother 7:349–352

    Google Scholar 

  • Hardter U, Luzhetska M, Ebeling S, Bechthold A (2012) Ethanol production in actinomycetes after expression of synthetic adhB and pdc. Open Biotechnol J 6(1):13–16

    Article  CAS  Google Scholar 

  • Hashimoto M, Komori T, Kamiya T (1976) Nocardicin A, a new monocyclic beta-lactam antibiotic II. Structure determination of nocardicins A and B. J Antibiot 29(9):890–901

    Article  CAS  PubMed  Google Scholar 

  • Hata T, Hoshi T, Kanamori K, Matsumae A, Sano Y, Shima T, Sugawara R (1956) Mitomycin, a new antibiotic from Streptomyces. I. J Antibiot 9(4):141

    CAS  PubMed  Google Scholar 

  • Hazen EL, Brown R (1950) Two antifungal agents produced by a soil actinomycete. Science (New York, NY) 112(2911):423–423

    CAS  Google Scholar 

  • Heide L (2014) New aminocoumarin antibiotics as gyrase inhibitors. Int J Med Microbiol 304(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Heisey RM, Huang J, Mishra SK, Keller JE, Miller JR, Putnam AR, D'Silva TD (1988) Production of valinomycin, an insecticidal antibiotic, by Streptomyces griseus var. flexipertum var. nov. J Agric Food Chem 36(6):1283–1286

    Article  CAS  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104(1):155–172

    Article  CAS  PubMed  Google Scholar 

  • Hesterkamp T (2015) Antibiotics clinical development and pipeline. Curr Top Microbiol Immunol 398:447–474

    Google Scholar 

  • Hirsch AM, Valdés M (2010) Micromonospora: an important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biol Biochem 42(4):536–542

    Article  CAS  Google Scholar 

  • Hollstein U (1974) Actinomycin. Chemistry and mechanism of action. Chem Rev 74(6):625–652

    Article  CAS  Google Scholar 

  • Huber G, Schacht U, Weidenmüller H, Schmidt-Thomé J, Duphorn J, Tschesche R (1964) Meonomycin, a new antibiotic. II. Characterization and chemistry. Antimicrob Agents Chemother 5:737–742

    Google Scholar 

  • Ikeda M (2003) Amino acid production processes. In: Microbial production of l-amino acids. Springer, Berlin, pp 1–35

    Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7(4):182–196

    Article  CAS  PubMed  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi S, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342

    Article  CAS  Google Scholar 

  • Jacob N, Poorna CA, Prema P (2008) Purification and partial characterization of polygalacturonase from Streptomyces lydicus. Bioresour Technol 99(14):6697–6701

    Article  CAS  PubMed  Google Scholar 

  • Jang H-D, Chen K-S (2003) Production and characterization of thermostable cellulases from Streptomyces transformant T3-1. World J Microbiol Biotechnol 19(3):263–268

    Article  CAS  Google Scholar 

  • Jani SA, Chudasama CJ, Patel DB, Bhatt PS, Patel HN (2012) Optimization of extracellular protease production from alkali thermo tolerant actinomycetes: Saccharomonospora viridis SJ-21. Bull Environ Pharmacol Life Sci 1(6):84–92

    Google Scholar 

  • Jaouadi B, Abdelmalek B, Fodil D, Ferradji FZ, Rekik H, Zaraî N, Bejar S (2010) Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. strain AB1 with high stability in organic solvents. Bioresour Technol 101(21):8361–8369

    Article  CAS  PubMed  Google Scholar 

  • Jenifer JSCA, Donio MBS, Michaelbabu M, Vincent SGP, Citarasu T (2015) Haloalkaliphilic Streptomyces spp. AJ8 isolated from solar salt works and its’ pharmacological potential. AMB Express 5(1):1–12

    Article  CAS  Google Scholar 

  • Jovetic S, Zhu Y, Marcone GL, Marinelli F, Tramper J (2010) β-lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol 28(12):596–604

    Article  CAS  PubMed  Google Scholar 

  • Juhasz O, Škárka B (1990) Purification and characterization of an extracellular proteinase from Brevibacterium linens. Can J Microbiol 36(7):510–512

    Article  CAS  Google Scholar 

  • Kafarski P (2012) Rainbow code of biotechnology. CHEMIK Nauka-Technika-Rynek 1(66):811–816

    Google Scholar 

  • Kahan J, Kahan F, Goegelman R, Currie S, Jackson M, Stapley E et al (1979) Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot 32(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105(2):425–448

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1):5–25

    Article  CAS  PubMed  Google Scholar 

  • Kamei T, Suzuki H, Matsuzaki M, Otani T, Kondo H, Nakamura S (1979) Cholesterol esterase produced by Streptomyces lavendulae. II. Purification and properties as a lipolytic enzyme. Chem Pharm Bull 27(7):1704–1707

    Article  CAS  Google Scholar 

  • Kar S, Ray R (2008) Statistical optimization of alpha-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology. Polish J Microbiol 57(1):49

    CAS  Google Scholar 

  • Karmakar M, Ray R (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41

    Article  CAS  Google Scholar 

  • Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KB (2013) Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomedicine 9(7):951–960

    Article  CAS  PubMed  Google Scholar 

  • Karthik L, Kumar G, Kirthi AV, Rahuman A, Rao KB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37(2):261–267

    Article  CAS  PubMed  Google Scholar 

  • Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41(2):267–273

    Article  Google Scholar 

  • Kaur N, Rajendran MK, Kaur G, Shanmugam M (2014) Isoptericola rhizophila sp. nov., a novel actinobacterium isolated from rhizosphere soil. Antonie Van Leeuwenhoek 106(2):301–307

    Article  CAS  PubMed  Google Scholar 

  • Kelley I, Freeman J, Evans F, Cerniglia C (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59(3):800–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274(1):1–14

    Article  Google Scholar 

  • Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31(8):1737–1744

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Filonow A, Singleton L (1997) Augmentation of soil with sporangia of Actinoplanes spp. for biological control of Pythium damping-off. Biocontrol Sci Tech 7(1):11–22

    Article  Google Scholar 

  • Khosla R, Verma D, Kapur A, Aruna R, Khanna N (1999) Streptogramins: a new class of antibiotics. Indian J Med Sci 53(3):111–119

    CAS  PubMed  Google Scholar 

  • Kim SB, Goodfellow M (2002) Streptomyces avermitilis sp. nov., nom. rev., a taxonomic home for the avermectin-producing streptomycetes. Int J Syst Evol Microbiol 52(6):2011–2014

    CAS  PubMed  Google Scholar 

  • Kim YJ, Kim D-O, Chun OK, Shin D-H, Jung H, Lee CY, Wilson DB (2005) Phenolic extraction from apple peel by cellulases from Thermobifida fusca. J Agric Food Chem 53(24):9560–9565

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Song JY, Moon MH, Smith CP, Hong S-K, Chang YK (2007) pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin production in Streptomyces coelicolor A3 (2). Appl Microbiol Biotechnol 76(5):1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M et al (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot 40(9):1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S et al (2015) Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348(6239):1106–1112

    Article  CAS  PubMed  Google Scholar 

  • Kluepfel D, Ishaque M (1982) Xylan-induced cellulolytic enzymes in Streptomyces flavogriseus. Dev Ind Microbiol 23:389–396

    CAS  Google Scholar 

  • Kluepfel D, Shareck F, Mondou F, Morosoli R (1986) Characterization of cellulase and xylanase activities of Streptomyces lividans. Appl Microbiol Biotechnol 24(3):230–234

    Article  CAS  Google Scholar 

  • Kohlstedt M, Becker J, Wittmann C (2010) Metabolic fluxes and beyond—systems biology understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 88(5):1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Koizumi S, Yonetani Y, Maruyama A, Teshiba S (2000) Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 53(6):674–679

    Article  CAS  PubMed  Google Scholar 

  • Krishna P, Arora A, Reddy MS (2008) An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites. World J Microbiol Biotechnol 24(12):3079–3085

    Article  CAS  Google Scholar 

  • Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M et al (1998) Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242(2):540–547

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B et al (1999) Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci 96(16):9112–9117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar Y, Goodfellow M (2008) Five new members of the Streptomyces violaceusniger 16S rRNA gene clade: Streptomyces castelarensis sp. nov., comb. nov., Streptomyces himastatinicus sp. nov., Streptomyces mordarskii sp. nov., Streptomyces rapamycinicus sp. nov. and Streptomyces ruanii sp. nov. Int J Syst Evol Microbiol 58(6):1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Kurane R, Suzuki T, Fukuoka S (1984) Purification and some properties of a phthalate ester hydrolyzing enzyme from Nocardia erythropolis. Appl Microbiol Biotechnol 20(6):378–383

    Article  CAS  Google Scholar 

  • Lanoot B, Vancanneyt M, Cleenwerck I, Wang L, Li W, Liu Z, Swings J (2002) The search for synonyms among streptomycetes by using SDS-PAGE of whole-cell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus. Int J Syst Evol Microbiol 52(3):823–829

    CAS  PubMed  Google Scholar 

  • LaPlante KL, Rybak MJ (2004) Daptomycin—a novel antibiotic against Gram-positive pathogens. Expert Opin Pharmacother 5(11):2321–2331

    Article  CAS  PubMed  Google Scholar 

  • Latha S, Vinothini G, Calvin DJD, Dhanasekaran D (2016) In vitro probiotic profile based selection of indigenous actinobacterial probiont Streptomyces sp. JD9 for enhanced broiler production. J Biosci Bioeng 121(1):124–131

    Article  CAS  PubMed  Google Scholar 

  • Laxman R, More S (2002) Reduction of hexavalent chromium by Streptomyces griseus. Miner Eng 15(11):831–837

    Article  CAS  Google Scholar 

  • Lechevalier M, Prauser H, Labeda D, Ruan J-S (1986) Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Evol Microbiol 36(1):29–37

    Google Scholar 

  • Leclercq R (2002) Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34(4):482–492

    Article  CAS  PubMed  Google Scholar 

  • Lee MD, Dunne TS, Siegel MM, Chang CC, Morton GO, Borders DB (1987) Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicin. gamma. 1I. J Am Chem Soc 109(11):3464–3466

    Article  CAS  Google Scholar 

  • Lee MD, Manning JK, Williams DR, Kuck NA, Testa RT, Borders DB (1989) Calicheamicins, a novel family of antitumor antibiotics. 3. Isolation, purification and characterization of calicheamicins beta 1Br, gamma 1Br, alpha 2I, alpha 3I, beta 1I, gamma 1I and delta 1I. J Antibiot 42(7):1070–1087

    Article  CAS  PubMed  Google Scholar 

  • Lee H-N, Im J-H, Lee M-J, Lee SY, Kim E-S (2009) A putative secreted solute binding protein, SCO6569 is a possible AfsR2-dependent down-regulator of actinorhodin biosynthesis in Streptomyces coelicolor. Process Biochem 44(3):373–377

    Article  CAS  Google Scholar 

  • Lewis RJ, Tsai FT, Wigley DB (1996) Molecular mechanisms of drug inhibition of DNA gyrase. BioEssays 18(8):661–671

    Article  CAS  PubMed  Google Scholar 

  • Li X, Dobretsov S, Xu Y, Xiao X, Hung OS, Qian P-Y (2006) Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling 22(3):187–194

    Article  Google Scholar 

  • Lin J, Ballim R (2012) Biocorrosion control: current strategies and promising alternatives. Afr J Biotechnol 11(91):15736–15747

    Article  CAS  Google Scholar 

  • Lin L, Ge HM, Yan T, Qin YH, Tan RX (2012) Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236(6):1849–1861

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W (2011) Efficient biotransformation of cholesterol to androsta-1, 4-diene-3, 17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol 27(4):759–765

    Article  CAS  Google Scholar 

  • Ltd LE (2013) Actinogen collaboration with Leaf Energy Ltd on certain bacterial strains from the Actinomycetes family relevant to leaf energy’s glycerol pretreatment process

    Google Scholar 

  • Luepke KH, Suda KJ, Boucher H, Russo RL, Bonney MW, Hunt TD, Mohr JF (2017) Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 37(1):71–84

    Google Scholar 

  • Luthra U, Khadpekar S, Trivedi A, Shetty A, Kumar H (2015) Biotransformation of 4-androstene-3, 17-dione to androst-1, 4-diene-3, 17-dione by nocardioides simplex. World J Pharm Pharm Sci 4(11):1935–1943

    CAS  Google Scholar 

  • Maiese WM, Lechevalier MP, Lechevalier HA, Korshalla J, Kuck N, Fantini A et al (1989) Calicheamicins, a novel family of antitumor antibiotics. Taxonomy, fermentation and biological properties. J Antibiot 42(4):558–563

    Article  CAS  PubMed  Google Scholar 

  • Mancy D, Ninet L, Preud HJ (1973) Antibiotic 18,887 rp. Google Patents

    Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim S-K (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res Int 2013:1–9

    Google Scholar 

  • Manuel SL, Erika K, Mauricio AC (2013) Cadmium bioremediation by a resistant Streptomyces strain. In: Actinobacteria: application in bioremediation and production of industrial enzymes. CRC Press, Boca Raton, p 122

    Google Scholar 

  • Margalith P, Beretta G (1960) Rifomycin. XI. Taxonomic study on streptomyces mediterranei nov. sp. Mycopathol Mycol Appl 13(4):321–330

    Article  Google Scholar 

  • Martens J-H, Barg H, Warren M, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285

    Article  CAS  PubMed  Google Scholar 

  • Marui M, Nakanishi K, Yasui T (1985) Purification and properties of three types of xylanases induced by methyl β-xyloside from Streptomyces sp. Agric Biol Chem 49(12):3399–3407

    Article  CAS  Google Scholar 

  • Mason D, Dietz A, DeBoer C (1963) Lincomycin, a new antibiotic. I. Discovery and biological properties. Antimicrob Agents Chemother 1962:554–559

    CAS  Google Scholar 

  • McCarthy AJ, Peace E, Broda P (1985) Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Appl Microbiol Biotechnol 21(3–4):238–244

    Article  CAS  Google Scholar 

  • McCormick MH, McGuire J, Pittenger G, Pittenger R, Stark W (1954) Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot Annu 3:606–611

    Google Scholar 

  • McGuire JM, Bunch R, Anderson R, Boaz H, Flynn E, Powell H, Smith J (1952) Ilotycin, a new antibiotic. Antibiot Chemother (Northfield, IL) 2(6):281–283

    CAS  Google Scholar 

  • McKillop C, Elvin P, Kenten J (1986) Cloning and expression of an extracellular α-amylase gene from Streptomyces hygroscopicus in Streptomyces lividans 66. FEMS Microbiol Lett 36(1):3–7

    CAS  Google Scholar 

  • McMurry L, Levy S (2000) Tetracycline resistance in gram-positive bacteria. Gram-positive pathogens. ASM Press, Washington, DC, pp 660–677

    Google Scholar 

  • Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D, Keller S et al (2010) Labyrinthopeptine—eine neue Klasse carbacyclischer Lantibiotika. Angew Chem 122(6):1169–1173

    Article  Google Scholar 

  • Mertz JL, Peloso JS, Barker BJ, Babbitt GE, Occolowitz JL, Simson VL, Kline RM (1986) Isolation and structural identification of nine avilamycins. J Antibiot 39(7):877–887

    Article  CAS  PubMed  Google Scholar 

  • Meyers BR, Kaplan K, Weinstein L (1969) Microbiological and pharmacological behaviour of 7-chloro-lincomycin. Appl Microbiol 17:653–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4(3):324–329

    Article  CAS  PubMed  Google Scholar 

  • Mienda B, Yahya A, Galadima I, Shamsir M (2014) An overview of microbial proteases for industrial applications. Res J Pharm Biol Chem Sci 5:388–396

    CAS  Google Scholar 

  • Miller TW, Chaiet L, Cole DJ, Cole LJ, Flor JE, Goegelman RT et al (1979) Avermectins, new family of potent anthelmintic agents: isolation and chromatographic properties. Antimicrob Agents Chemother 15(3):368–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingeot-Leclercq M-P, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43(4):727–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitscher LA, Juvarkar JV, Rosenbrook W Jr, Andres WW, Schenck JR, Egan RS (1970) Structure of chelocardin, a novel tetracycline antibiotic. J Am Chem Soc 92(20):6070–6071

    Article  CAS  PubMed  Google Scholar 

  • Modi C, Mody S, Patel H, Dudhatra G, Kumar A, Sheikh T (2011) Growth promoting use of antimicrobial agents in animals. J Appl Pharm Sci 1(8):33–36

    Google Scholar 

  • Mohagheghi A, Grohmann K, Himmel M, Leighton L, Updegraff D (1986) Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int J Syst Evol Microbiol 36(3):435–443

    CAS  Google Scholar 

  • Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22(4):615–624

    Article  PubMed  CAS  Google Scholar 

  • Mordarski M, Wieczorek J, Jaworska B (1969) On the conditions of amylase production by actinomycetes. Arch Immunol Ther Exp 18(3):375–381

    Google Scholar 

  • Moreira A, Phillips J, Humphrey A (1981) Production of cellulases by Thermomonospora sp. Biotechnol Bioeng 23(6):1339–1347

    Article  CAS  Google Scholar 

  • Moreira K, Albuquerque B, Teixeira M, Porto A, Lima Filho J (2002) Application of protease from Nocardiopsis sp. as a laundry detergent additive. World J Microbiol Biotechnol 18(4):309–315

    Article  Google Scholar 

  • Mukthavaram R, Jiang P, Saklecha R, Simbery D, Bharati R, Nomura N, Chao Y, Pastorino S (2013) High-efficiency liposomal encapsulation of the tyrosine kinase inhibitor leads to improve in vivo toxicity and tumor response profile. Int J Nanomedicine 8:3991–4006

    PubMed  PubMed Central  Google Scholar 

  • Müller L (1989) Chemistry, biochemistry and therapeutic potential of microbial α-glucosidase inhibitors. In: NoVel microbial products for medicine and agriculture. Springer, New York, pp 109–116

    Google Scholar 

  • Müller R, Wink J (2014) Future potential for anti-infectives from bacteria—how to exploit biodiversity and genomic potential. Int J Med Microbiol 304(1):3–13

    Article  PubMed  CAS  Google Scholar 

  • Müller L, Junge B, Frommer W, Schmidt D, Truscheit E (1980) Acarbose (BAYg5421) and homologous α-glucosidase inhibitors from actinoplanaceae. Enzyme inhibitors. Verlag Chemie, Weinheim, pp 109–122

    Google Scholar 

  • Murakami T, Burian J, Yanai K, Bibb MJ, Thompson CJ (2011) A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proc Natl Acad Sci 108(38):16020–16025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagoba B, Vedpathak DV (2011) Medical applications of Siderophores—a review. Eur J Gen Med 8(3):229–235

    Google Scholar 

  • Nakajima T, Tsukamoto K-I, Watanabe T, Kainuma K, Matsuda K (1984) Purification and some properties of an endo-1, 4-β-d-xylanase from Streptomyces sp. J Ferment Technol 62(3):269–276

    CAS  Google Scholar 

  • Nawani N, Kapadnis B, Das A, Rao A, Mahajan S (2002) Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2. J Appl Microbiol 93(6):965–975

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou K, Dai WM (1991) Chemie und Biologie von Endiin-Cytostatica/Antibiotica. Angew Chem 103(11):1453–1481

    Article  CAS  Google Scholar 

  • Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol Ther 3(3):597–611

    Google Scholar 

  • Nigam V, Khandelwal A, Gothwal R, Mohan M, Choudhury B, Vidyarthi A, Ghosh P (2009) Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp. J Biosci 34(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Ningthoujam DS, Kshetri P, Sanasam S, Nimaichand S (2009) Screening, identification of best producers and optimization of extracellular proteases from moderately halophilic alkalithermotolerant indigenous actinomycetes. World Appl Sci J 7(7):907–916

    CAS  Google Scholar 

  • Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T (1994) Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem 269(9):6320–6324

    Google Scholar 

  • Nlshida H, Sakakibara T, Aoki F, Saito T, Ichikawa K, Inagaki T et al (1995) Generation of novel rapamycin structures by microbial manipulations. J Antibiot 48(7):657–666

    Article  Google Scholar 

  • Okazaki T, Ono M, Aoki A, Fukuda R (1983) Milbemycins, a new family of macrolide antibiotics: producing organism and its mutants. J Antibiot 36(4):438–441

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Takahashi K, Kizuka M, Enokita R (1995) Studies on actinomycetes isolated from plant leaves. Annu Rep Sankyo Res Lab 47:97–106

    Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68(4):475–480

    Article  CAS  PubMed  Google Scholar 

  • Oliver T, Prokop J, Bower R, Otto R (1962) Chelocardin, a new broad-spectrum antibiotic. I. Discovery and biological properties. Antimicrob Agents Chemother:583–591

    Google Scholar 

  • Omura S, Sasaki Y, Iwai Y, Takeshima H (1995) Staurosporine, a potentially important gift from a microorganism. J Antibiot 48(7):535–548

    Article  CAS  PubMed  Google Scholar 

  • Oppolzer W, Prelog V, Sensi P (1964) The composition of rifamycin B and related rifamycins. Experientia 20(6):336–339

    Article  CAS  PubMed  Google Scholar 

  • Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105(3):439–460

    Article  CAS  PubMed  Google Scholar 

  • Oyama H, Kinjoh M, Watari M, Murao S (1997) Purification and characterization of an alkaline proteinase produced by Pimelobacter sp. Z-483. J Ferment Bioeng 84(4):351–353

    Article  CAS  Google Scholar 

  • Oza G, Pandey S, Gupta A, Kesarkar R, Sharon M (2012) Biosynthetic reduction of gold ions to gold nanoparticles by Nocardia farcinica. J Microbiol Biotechnol Res 2:511–515

    CAS  Google Scholar 

  • Pacheco da Rosa J, Korenblum E, Franco-Cirigliano MN, Abreu F, Lins U, Soares R et al (2013) Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes. BioMed Res Int 2013:309769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown N, Macaskie L (2001) Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnol Lett 23(1):61–65

    Article  CAS  Google Scholar 

  • Pervaiz I, Ahmad S, Madni M, Ahmad H, Khaliq F (2013) Microbial biotransformation: a tool for drug designing. Appl Biochem Microbiol 49(5):437–450

    Article  CAS  Google Scholar 

  • Pillmoor JB (1998) Carbocyclic coformycin: a case study of the opportunities and pitfalls in the industrial search for new agrochemicals from nature. Pestic Sci 52(1):75–80

    Article  CAS  Google Scholar 

  • Polti MA, García RO, Amoroso MJ, Abate CM (2009) Bioremediation of chromium (VI) contaminated soil by Streptomyces sp. MC1. J Basic Microbiol 49(3):285–292

    Article  CAS  PubMed  Google Scholar 

  • Ponmariappan S, Maruthamuthu S, Palaniswamy N, Palaniappan R (2004) Corrosion control by bacterial biofilms—an overview. Corros Rev 22(4):307–324

    Article  CAS  Google Scholar 

  • Prakash S, Ramasubburayan R, Iyapparaj P, Arthi APR, Ahila NK, Ramkumar VS et al (2015) Environmentally benign antifouling potentials of triterpene-glycosides from Streptomyces fradiae: a mangrove isolate. RSC Adv 5(37):29524–29534

    Article  CAS  Google Scholar 

  • Prakasham RS, Buddana S, Yannam S, Guntuku G (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22(5):614–621

    Article  CAS  PubMed  Google Scholar 

  • Pramanik A, Stroeher UH, Krejci J, Standish AJ, Bohn E, Paton JC et al (2007) Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae. Int J Med Microbiol 297(6):459–469

    Article  CAS  PubMed  Google Scholar 

  • Prasad GS, Girisham S, Reddy S (2010) Microbial transformation of albendazole. Indian J Expt Biol 48:415–420

    CAS  Google Scholar 

  • Purushe S, Prakash D, Nawani NN, Dhakephalkar P, Kapadnis B (2012) Biocatalytic potential of an alkalophilic and thermophilic dextranase as a remedial measure for dextran removal during sugar manufacture. Bioresour Technol 115:2–7

    Article  CAS  PubMed  Google Scholar 

  • Purushothaman Y (2015) Process optimization and transesterification of Jatropha curcas L oil by Actinomycetes lipases for biodiesel production

    Google Scholar 

  • Putter I, Mac Connell J, Preiser F, Haidri A, Ristich S, Dybas R (1981) Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37(9):963–964

    Article  CAS  Google Scholar 

  • Qian P, Xu Y, Zhou X, He H, Fusetani N, Dai W-M (2012) Antifouling furan-2-one derivatives. Google Patents

    Google Scholar 

  • Rebstock MC, Crooks HM, Controulis J, Bartz QR (1949) Chloramphenicol (chloromycetin). 1 IV. 1a chemical studies. J Am Chem Soc 71(7):2458–2462

    Article  CAS  Google Scholar 

  • Rene’N H, Apel WA, Thompson VS, Sheridan PP (2006) Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol 6(1):1

    Article  CAS  Google Scholar 

  • Rifaat HM, Hassanein SM, El-Said OH, Saleh SA, Selim MS (2005) Purification and characterisation of extracellular neutral protease from Streptomyces microflavus. Arab J Biotechnol 9:51–60575

    Google Scholar 

  • Rohamare S, Gaikwad S, Jones D, Bhavnani V, Pal J, Sharma R, Chatterjee P (2015) Cloning, expression and in silico studies of a serine protease from a marine actinomycete (Nocardiopsis sp. NCIM 5124). Process Biochem 50(3):378–387

    Article  CAS  Google Scholar 

  • Rurangwa E, Verdegem MC (2015) Microorganisms in recirculating aquaculture systems and their management. Rev Aquac 7(2):117–130

    Article  Google Scholar 

  • Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23(3):245–253

    Article  CAS  Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B: Biointerfaces 81(1):358–362

    Article  CAS  PubMed  Google Scholar 

  • Samundeeswari A, Dhas SP, Nirmala J, John SP, Mukherjee A, Chandrasekaran N (2012) Biosynthesis of silver nanoparticles using actinobacterium Streptomyces albogriseolus and its antibacterial activity. Biotechnol Appl Biochem 59(6):503–507

    Article  CAS  PubMed  Google Scholar 

  • Saraf M, Hastings A (2010) Biofuels, the role of biotechnology to improve their sustainability and profitability. In: Biodiversity, biofuels, agroforestry and conservation agriculture. Springer, Dordrecht, pp 123–148

    Chapter  Google Scholar 

  • Saxena S (2015) Applied microbiology. Springer, New Delhi

    Book  Google Scholar 

  • Scheinfeld N (2003) Telithromycin: a brief review of a new ketolide antibiotic. J Drugs Dermatol 3(4):409–413

    Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Schlehuber S, Skerra A (2005) Anticalins as an alternative to antibody technology. Expert Opin Biol Ther 5(11):1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Haferburg G, Sineriz M, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde-Geochem 65:131–144

    Article  CAS  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz [a] anthracene, and benzo [a] pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62(1):13–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30(1):47–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrijver AD, Mot RD (1999) Degradation of pesticides by actinomycetes. Crit Rev Microbiol 25(2):85–119

    Article  PubMed  Google Scholar 

  • Sebek O, Perlman D (1979) Microbial transformation of steroids and sterols. Microb Technol Microb Process 1:483–496

    CAS  Google Scholar 

  • Sehgal S, Baker H, Vézina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot 28(10):727–732

    Article  CAS  PubMed  Google Scholar 

  • Sekizawa Y, Takematsu T (2013) How to discover new antibiotics for herbicidal use. Paper presented at the natural products: proceedings of the 5th international congress of pesticide chemistry, Kyoto, Japan, 29 Aug–4 Sept 1982

    Google Scholar 

  • Sensi P, Greco A, Ballotta R (1958) Rifomycin. I. Isolation and properties of rifomycin B and rifomycin complex. Antibiot Annu 7:262–270

    Google Scholar 

  • Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Pazhanimurugan R, Balagurunathan R (2013) A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf B: Biointerfaces 111:680–687

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Du L, Sanchez C, Chen M, Edwards DJ (1999) Bleomycin biosynthesis in Streptomyces verticillus ATCC15003: a model of hybrid peptide and polyketide biosynthesis. Bioorg Chem 27(2):155–171

    Article  CAS  Google Scholar 

  • Shen M, Liu Z-Q, Zheng Y-G, Shen Y-C (2009) Enhancing endo-nitrilase production by a newly isolated Arthrobacter nitroguajacolicus ZJUTB06-99 through optimization of culture medium. Biotechnol Bioprocess Eng 14(6):795–802

    Article  CAS  Google Scholar 

  • Shiio I, Ôtsuka S-I, Katsuya N (1963) Cellular permeability and extracellular formation of glutamic acid in Brevibacterium flavum. J Biochem 53(5):333–340

    Article  PubMed  Google Scholar 

  • Shimizu M (2011) Endophytic actinomycetes: biocontrol agents and growth promoters. In: Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 201–220

    Chapter  Google Scholar 

  • Shivlata L, Satyanarayana T (2015) Thermophilic and alkaliphilic actinobacteria: biology and potential applications. Front Microbiol 6:1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siñeriz ML, Kothe E, Abate CM (2009) Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol 49(S1):S55–S62

    Article  PubMed  Google Scholar 

  • Soetaert W, Vandamme E (2006) The impact of industrial biotechnology. Biotechnol J 1(7–8):756–769

    Article  CAS  PubMed  Google Scholar 

  • Solans M, Vobis G, Cassán F, Luna V, Wall LG (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27(9):2195–2202

    Article  CAS  Google Scholar 

  • Somma S, Gastaldo L, Corti A (1984) Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp. Antimicrob Agents Chemother 26(6):917–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, van Pelt S, Tourova TP, Evtushenko LI (2009) Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 59(2):248–253

    Article  CAS  PubMed  Google Scholar 

  • Sorokin D, Tourova T, Sukhacheva M, Mardanov A, Ravin N (2012) Bacterial chitin utilisation at extremely haloalkaline conditions. Extremophiles 16(6):883–894

    Article  CAS  PubMed  Google Scholar 

  • Souza PM (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41(4):850–861

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamford T, Stamford N, Coelho L, Araujo J (2001) Production and characterization of a thermostable α-amylase from Nocardiopsis sp. endophyte of yam bean. Bioresour Technol 76(2):137–141

    Article  CAS  PubMed  Google Scholar 

  • Stefanska AL, Fulston M, Houge-Frydrych CS, Jones JJ, Warr SR (2000) A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. J Antibiot 53(12):1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Stutzenberger FJ (1971) Cellulase production by Thermomonospora curvata isolated from municipal solid waste compost. Appl Microbiol 22(2):147–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stutzenberger FJ (1972) Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification, and product of the cellulase. Appl Microbiol 24(1):83–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stutzenberger F, Carnell R (1977) Amylase production by thermomonospora curvata. Appl Environ Microbiol 34(2):234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suganuma T, Mizukami T, Moori K-I, Ohnishi M, Hiromi K (1980) Studies of the action pattern of an α-amylase from Streptomyces praecox NA-273. J Biochem 88(1):131–138

    CAS  PubMed  Google Scholar 

  • Sugiyama T, Sugito H, Mamiya K, Suzuki Y, Ando K, Ohnuki T (2012) Hexavalent chromium reduction by an actinobacterium Flexivirga alba ST13 T in the family Dermacoccaceae. J Biosci Bioeng 113(3):367–371

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Matsumoto A, Seino A, Ueno J, Iwai Y, Omura S (2002) Streptomyces avermectinius sp. nov., an avermectin-producing strain. Int J Syst Evol Microbiol 52(6):2163–2168

    CAS  PubMed  Google Scholar 

  • Takegawa K, Mai L, Miyauchi C, Iwahara S (1993) Purification and characterization of alkaline proteinase from Arthrobacter protophormiae. Technical Bulletin of Faculty of Agriculture-Kagawa University, Japan

    Google Scholar 

  • Takeshima H (1992) Antiviral agents, in The Search for Bioactive Compounds from Microorganisms, Springer Science & Business Media: 45–62

    Google Scholar 

  • Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 76(21):7154–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takiguchi Y, Mishima H, Okuda M, Terao M, Aoki A, Fukuda R (1980) Milbemycins, a new family of macrolide antibiotics: fermentation, isolation and physico-chemical properties. J Antibiot 33(10):1120–1127

    Article  CAS  PubMed  Google Scholar 

  • Takita T, Muraoka Y, Yoshioka T, Fujii A, Maeda K, Umezawa H (1972) The chemistry of bleomycin. IX. J Antibiot 25(12):755–758

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y (1992) Antifungal Agents in The search for bioactive compounds from microorganisms Satoshi Omura (ed.), Springer, New York

    Google Scholar 

  • Terlain B, Thomas J (1971) Structure of griselimycin, polypeptide antibiotic extracted Streptomyces cultures. I. Identification of the products liberated by hydrolysis. Bull Soc Chim Fr 6:2349–2356

    CAS  PubMed  Google Scholar 

  • Thomas KV, Fileman TW, Readman JW, Waldock MJ (2001) Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Mar Pollut Bull 42(8):677–688

    Article  CAS  PubMed  Google Scholar 

  • Tominaga Y, Tsujisaka Y (1976) Purifications and some properties of two chitinases from Streptomyces orientalis which lyse Rhizopus cell wall. Agric Biol Chem 40(12):2325–2333

    CAS  Google Scholar 

  • Torres-Chavolla E, Ranasinghe RJ, Alocilja EC (2010) Characterization and functionalization of biogenic gold nanoparticles for biosensing enhancement. IEEE Trans Nanotechnol 9(5):533–538

    Article  Google Scholar 

  • Touioui SB, Jaouadi NZ, Boudjella H, Ferradji FZ, Belhoul M, Rekik H et al (2015) Purification and biochemical characterization of two detergent-stable serine alkaline proteases from Streptomyces sp. strain AH4. World J Microbiol Biotechnol 31(7):1079–1092

    Article  PubMed  CAS  Google Scholar 

  • Trejo WH, Bennett R (1963) Streptomyces nodosus sp. n., the amphotericin-producing organism. J Bacteriol 85(2):436–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truscheit E, Frommer W, Junge B, Müller L, Schmidt DD, Wingender W (1981) Chemie und Biochemie mikrobieller α-Glucosidasen-Inhibitoren. Angew Chem 93(9):738–755

    Article  CAS  Google Scholar 

  • Tseng M, Liao H-C, Chiang W-P, Yuan G-F (2011) Isoptericola chiayiensis sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 61(7):1667–1670

    Article  CAS  PubMed  Google Scholar 

  • Tsibakhashvili NY, Kirkesali EI, Pataraya DT, Gurielidze MA, Kalabegishvili TL, Gvarjaladze DN et al (2011) Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Adv Sci Lett 4(11–12):3408–3417

    Article  CAS  Google Scholar 

  • Tsujibo H, Miyamoto K, Hasegawa T, Inamori Y (1990) Purification and characterization of two types of alkaline serine proteases produced by an alkalophilic actinomycete. J Appl Bacteriol 69(4):520–529

    Article  CAS  PubMed  Google Scholar 

  • Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot 19(5):200

    CAS  PubMed  Google Scholar 

  • Umezawa S, Tatsuta K, Fujcmoto K, Tsuchiya T, Umezawa H, Naganawa H (1972) Structure of antipain, a new sakagughi-positive product of streptomyces. J Antibiot 25(4):267–270

    Article  CAS  PubMed  Google Scholar 

  • Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T (1976) Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot 29(1):97–99

    Article  CAS  PubMed  Google Scholar 

  • Vaijayanthi G, Vijayakumar R, Dhanasekaran D (2016) Actinobacteria—a biofactory of novel enzymes

    Book  Google Scholar 

  • Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG (2010) Developments in nitrile and amide biotransformation processes. Trends Biotechnol 28(11):561–569

    Article  CAS  PubMed  Google Scholar 

  • Veldkamp H, Van Den Berg G, Zevenhuizen L (1963) Glutamic acid production by Arthrobacter globiformis. Antonie Van Leeuwenhoek 29(1):35–51

    Article  CAS  PubMed  Google Scholar 

  • Vértesy L, Aretz W, Fehlhaber HW, Kogler H (1995) Salmycin A–D, Antibiotika aus Streptomyces violaceus, DSM 8286, mit Siderophor-Aminoglycosid-Struktur. Helv Chim Acta 78(1):46–60

    Article  Google Scholar 

  • Vezina C, Kudelski A, Sehgal S (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28(10):721–726

    Article  CAS  PubMed  Google Scholar 

  • Vicente M, Basilio A, Cabello A, Peláez F (2003) Microbial natural products as a source of antifungals. Clinical microbiology and infection 9(1):15–32

    Google Scholar 

  • Vickers AA, Chopra I, O’neill AJ (2007) Intrinsic novobiocin resistance in Staphylococcus saprophyticus. Antimicrob Agents Chemother 51(12):4484–4485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. In: Biofuels. Springer, Berlin, pp 121–145

    Chapter  Google Scholar 

  • Volkland HP, Harms H, Knopf K, Wanner O, Zehnder AJ (2000) Corrosion inhibition of mild steel by bacteria. Biofouling 15(4):287–297

    Article  CAS  Google Scholar 

  • Waksman SA, Woodruff HB (1940) Bacteriostatic and bactericidal substances produced by a soil actinomyces. Exp Biol Med 45(2):609–614

    Article  CAS  Google Scholar 

  • Waksman SA, Woodruff HB (1941) Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol 42(2):231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm H-J (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34(5):671–676

    Article  CAS  Google Scholar 

  • Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • Weigel A (2003) Triple-threat microbe gained powers from another bug. Science 302(5650):1488

    Article  CAS  Google Scholar 

  • Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58

    Article  CAS  PubMed  Google Scholar 

  • Wink JM, Kroppenstedt RM, Ganguli BN, Nadkarni SR, Schumann P, Seibert G, Stackebrandt E (2003) Three new antibiotic producing species of the genus Amycolatopsis, Amycolatopsis balhimycina sp. nov., A. tolypomycina sp. nov., A. vancoresmycina sp. nov., and description of Amycolatopsis keratiniphila subsp. keratiniphila subsp. nov. and A. keratiniphila subsp. nogabecina subsp. nov. Syst Appl Microbiol 26(1):38–46

    Article  CAS  PubMed  Google Scholar 

  • Wink J, Gandhi J, Kroppenstedt RM, Seibert G, Sträubler B, Schumann P, Stackebrandt E (2004) Amycolatopsis decaplanina sp. nov., a novel member of the genus with unusual morphology. Int J Syst Evol Microbiol 54(1):235–239

    Article  CAS  PubMed  Google Scholar 

  • Wink JM, Kroppenstedt RM, Schumann P, Seibert G, Stackebrandt E (2006) Actinoplanes liguriensis sp. nov. and Actinoplanes teichomyceticus sp. nov. Int J Syst Evol Microbiol 56(9):2125–2130

    Article  CAS  PubMed  Google Scholar 

  • Wink J, Schumann P, Atasayar E, Klenk H-P, Zaburannyi N, Westermann M, Kämpfer P (2017) ‘Streptomyces caelicus’, an antibioticproducing species of the genus Streptomyces, and Streptomyces canchipurensis Li et al. 2015 are later heterotypic synonyms of Streptomyces muensis Ningthoujam et al. 2014. Int J Syst Evol Microbiol 67(3):548–556

    Google Scholar 

  • Xiao K, Kinkel LL, Samac DA (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23(3):285–295

    Article  CAS  Google Scholar 

  • Xin Y, Sun Z, Chen Q, Wang J, Wang Y, Luogong L et al (2015) Purification and characterization of a novel extracellular thermostable alkaline protease from Streptomyces sp. M30. J Microbiol Biotechnol 25(11):1944

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, He H, Schulz S, Liu X, Fusetani N, Xiong H et al (2010) Potent antifouling compounds produced by marine Streptomyces. Bioresour Technol 101(4):1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Yamada O, Kaise Y, Futatsuya F, Ishida S, Ito K, Yamamoto H, Munakata K (1972) Studies on plant growth-regulating activities of anisomycin and toyocamycin. Agric Biol Chem 36(11):2013–2015

    Article  CAS  Google Scholar 

  • YanChu S (1993) New developments of agricultural antibiotic pesticide. Trans (China) 15(6):5–12

    Google Scholar 

  • Yang C-H, Liu W-H (2004) Purification and properties of a maltotriose-producing α-amylase from Thermobifida fusca. Enzym Microb Technol 35(2):254–260

    Article  CAS  Google Scholar 

  • Yang C-H, Liu W-H (2007) Cloning and characterization of a maltotriose-producing α-amylase gene from Thermobifida fusca. J Ind Microbiol Biotechnol 34(4):325–330

    Article  CAS  PubMed  Google Scholar 

  • You J, Cao L, Liu G, Zhou S, Tan H, Lin Y (2005) Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 21(5):679–682

    Article  Google Scholar 

  • Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A, Embil JM et al (2002) The ketolides: a critical review. Drugs 62(12):1771–1804

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang M, Sun H, Li X, Zhong L (2009) Isolation and characterization of Rhodococcus ruber CGMCC3090 that hydrolyzes aliphatic, aromatic and heterocyclic nitriles. Afr J Biotechnol 8(20):5467–5475

    CAS  Google Scholar 

  • Zhang J, Siika-Aho M, Puranen T, Tang M, Tenkanen M, Viikari L (2011) Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 4(1):1

    Article  CAS  Google Scholar 

  • Zhou Q, Li K, Jun X, Bo L (2009) Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour Technol 100(16):3780–3786

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hamedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hamedi, J., Poorinmohammad, N., Wink, J. (2017). The Role of Actinobacteria in Biotechnology. In: Wink, J., Mohammadipanah, F., Hamedi, J. (eds) Biology and Biotechnology of Actinobacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-60339-1_10

Download citation

Publish with us

Policies and ethics