Skip to main content

Toxicological Profiling of Cationised Magnetoferritin

  • Chapter
  • First Online:
  • 193 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Toxicity of a drug or a material is a major concern in the context of any biomedical application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jiang, W., Mashayekhi, H., Xing, B.: Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ. Pollut. 157(5), 1619–1625 (2009)

    Article  Google Scholar 

  2. Markides, H., Rotherham, M., El Haj, A.: Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012, 13 (2012)

    Article  Google Scholar 

  3. Dusinska, M., et al.: Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from nanotest. Nanotoxicology 9(sup1), 118–132 (2015)

    Article  Google Scholar 

  4. Kim, J.-E., Shin, J.-Y., Cho, M.-H.: Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch. Toxicol. 86(5), 685–700 (2012)

    Article  Google Scholar 

  5. Kostura, L., Kraitchman, D.L., Mackay, A.M., Pittenger, M.F., Bulte, J.W.: Feridex Labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed. 17(7), 513–517 (2004)

    Article  Google Scholar 

  6. Henning, T.D., et al.: The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. Contrast Media Mol. Imaging 4(4), 165–173 (2009)

    Article  MathSciNet  Google Scholar 

  7. Kim, T.H., Kim, J.K., Shim, W., Kim, S.Y., Park, T.J., Jung, J.Y.: Tracking of transplanted mesenchymal stem cells labeled with fluorescent magnetic nanoparticle in liver cirrhosis rat model with 3-T MRI. Magn. Reson. Imaging 28(7), 1004–1013 (2010)

    Article  Google Scholar 

  8. Gasparetto, E.L., Spray, D.C., de Carvalho, A.C.C., Mendez-Otero, R.: Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by Magnetic Resonance Imaging (2011)

    Google Scholar 

  9. Ju, S., Teng, G., Zhang, Y., Ma, M., Chen, F., Ni, Y.: In vitro labeling and mri of mesenchymal stem cells from human umbilical cord blood. Magn. Reson. Imaging 24(5), 611–617 (2006)

    Article  Google Scholar 

  10. Wilhelm, C., et al.: Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials 28(26), 3797–3806 (2007)

    Article  Google Scholar 

  11. Lu, C.-W., et al.: Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett. 7(1), 149–154 (2007)

    Article  ADS  Google Scholar 

  12. Uchida, M., et al.: A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magn. Reson. Med. 60(5), 1073–1081 (2008)

    Article  Google Scholar 

  13. Bulte, J.W.M., et al.: Magnetoferritin—characterization of a novel superparamagnetic MR contrast agent. JMRI: J. Magn. Reson. Imaging 4(3), 497–505 (1994)

    Article  Google Scholar 

  14. McNaught, A.D., McNaught, A.: Compendium of Chemical Terminology, vol. 1669. Blackwell Science Oxford (1997)

    Google Scholar 

  15. Goodman, C.M., McCusker, C.D., Yilmaz, T., Rotello, V.M.: Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15(4), 897–900 (2004)

    Article  Google Scholar 

  16. Frohlich, E.: The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577–5591 (2012)

    Article  Google Scholar 

  17. Nel, A.E., et al.: Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009)

    Article  ADS  Google Scholar 

  18. Shao, X.R., et al.: Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 48(4), 465–474 (2015)

    Article  Google Scholar 

  19. Carreira, S.C., Armstrong, J., Seddon, A., Perriman, A., Hartley-Davies, R., Schwarzacher, W.: Ultra-fast stem cell labelling using cationised magnetoferritin. Nanoscale 8(14), 7474–7483 (2016)

    Article  ADS  Google Scholar 

  20. Singh, N., Jenkins, G.J., Asadi, R., Doak, S.H.: Potential toxicity of superparamagnetic iron oxide nanoparticles (Spion). Nano Rev. 1 (2010)

    Google Scholar 

  21. Liong, M., et al.: Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889–896 (2008)

    Article  Google Scholar 

  22. Wilhelm, C., Billotey, C., Roger, J., Pons, J., Bacri, J.-C., Gazeau, F.: Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6), 1001–1011 (2003)

    Article  Google Scholar 

  23. Häfeli, U.O., et al.: Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 6(5), 1417–1428 (2009)

    Article  Google Scholar 

  24. Gallagher, S.R., Desjardins, P.R.: Quantitation of DNA and RNA with absorption and fluorescence spectroscopy. Curr. Protocols Hum. Genet. A. 3D. 1-A. 3D. 21 (2006)

    Google Scholar 

  25. Young, H.E., Black, A.C.: Adult stem cells. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 276A(1), 75–102 (2004)

    Article  Google Scholar 

  26. Pittenger, M.F., et al.: Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–147 (1999)

    Article  ADS  Google Scholar 

  27. Schmitz, N., Laverty, S., Kraus, V., Aigner, T.: Basic methods in histopathology of joint tissues. Osteoarthritis Crtilage 18, S113–S116 (2010)

    Article  Google Scholar 

  28. Roughley, P.J., Lee, E.R.: Cartilage proteoglycans: structure and potential functions. Microsc. Res. Tech. 28(5), 385–397 (1994)

    Article  Google Scholar 

  29. Dunkelman, N.S., Zimber, M.P., LeBaron, R.G., Pavelec, R., Kwan, M., Purchio, A.: Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol. Bioeng. 46(4), 299–305 (1995)

    Article  Google Scholar 

  30. Nakamasu, K., et al.: Membrane-bound transferrin-like protein (Mtf): structure, evolution and selective expression during chondrogenic differentiation of mouse embryonic cells. Biochimica et Biophysica Acta (BBA)-Gene Struct. Exp. 1447(2), 258–264 (1999)

    Google Scholar 

  31. Arbab, A.S., Wilson, L.B., Ashari, P., Jordan, E.K., Lewis, B.K., Frank, J.A.: A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (Spio) nanoparticles: Implications for cellular magnetic resonance imaging. NMR Biomed. 18(6), 383–389 (2005)

    Article  Google Scholar 

  32. Kolosnjaj-Tabi, J., et al.: The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano (2015)

    Google Scholar 

  33. Naqvi, S., et al.: Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomed. 5, 983 (2010)

    Article  Google Scholar 

  34. Singh, N., et al.: Nanogenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 30(23), 3891–3914 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Correia Carreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Correia Carreira, S. (2017). Toxicological Profiling of Cationised Magnetoferritin. In: Rapid Cell Magnetisation Using Cationised Magnetoferritin. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-60333-9_5

Download citation

Publish with us

Policies and ethics