Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSSTME))

  • 944 Accesses

Abstract

In this chapter, the basic tenets of fracture mechanics are described. The first term of the asymptotic expression for the stress and displacement fields in the neighborhood of a crack tip is presented for a homogeneous, isotropic , linear elastic material. The concept of fracture modes and stress intensity factors are discussed. The energy approach through the Griffith energy is delineated. A presentation of the J-integral and its relationship to the Griffith energy and the stress intensity factors is given. A description of a fracture criterion through the fracture toughness is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Standard E399-12\(\epsilon \)1 (2013) Standard test method for linear-elastic plane-strain fracture toughness \(K_{{\!}Ic}\) of metallic materials. In: Metals – mechanical testing; elevated and low-temperature tests; metallography, vol. 3.01. American Society for Testing and Materials, West Conshohocken, pp 519–551

    Google Scholar 

  2. Brown WF Jr, Srawley JE (1966) Plane strain crack toughness testing of high strength metallic materials. ASTM-STP 410. American Society of Testing and Materials, Philadelphia

    Google Scholar 

  3. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc A221:163–198

    Article  Google Scholar 

  4. Griffith AA (1924) The theory of rupture. In: Biezeno CB, Burgers JM (eds) Proceedings of the first international congress for applied mechanics. Waltman J Jr, Delft, the Netherlands, pp 55–63

    Google Scholar 

  5. Hudson CM, Seward SK (1978) A compendium of sources of fracture toughness and fatigue crack growth data for metallic alloys. Int J Fract 14:R151–R184

    Article  Google Scholar 

  6. Hudson CM, Seward SK (1982) A compendium of sources of fracture toughness and fatigue crack growth data for metallic alloys-part II. Int J Fract 20:R59–R117

    Article  Google Scholar 

  7. Hudson CM, Seward SK (1989) A compendium of sources of fracture toughness and fatigue crack growth data for metallic alloys-part III. Int J Fract 39:R43–R60

    Article  Google Scholar 

  8. Hudson CM, Seward SK (1991) A compendium of sources of fracture toughness and fatigue crack growth data for metallic alloys-part IV. Int J Fract 48:R19–R43

    Article  Google Scholar 

  9. Inglis CE (1913) Stresses in a plate due to the presence of cracks and sharp corners. Trans Inst Nav Archit 55:219–241

    Google Scholar 

  10. Irwin GR (1948) Fracture dynamics. In: Jonassen F, Roop WP, Bayless RT (eds) Fracturing of metals. American Society for Metals, Cleveland, pp 147–166

    Google Scholar 

  11. Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  12. Irwin GR (1958) Fracture. In: Flügge S (ed) Handbuch der physik, vol VI. Springer, Germany, pp 551–590

    Google Scholar 

  13. Kanninen MF, Popelar CH (1985) Advanced fracture mechanics. Oxford Engineering Science, England, pp 164–166

    MATH  Google Scholar 

  14. Murakami Y (1987, 1992, 2001) Stress intensity factors handbook, vol 1–5. Pergamon Press, Oxford

    Google Scholar 

  15. Orowan E (1934) Die mechanischen festigkeitseigenschaften und die realstruktur der kristalle. Z Krist 89:327–343

    Google Scholar 

  16. Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85:528–534

    Article  Google Scholar 

  17. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  18. Rice JR (1968) Mathematical analysis in the mechanics of fracture. In: Liebowitz H (ed) Fracture, vol II. Academic Press, New York, pp 191–311

    Google Scholar 

  19. Rooke DP, Cartwright DJ (1976) Compendium of stress intensity factors. Her Majesty’s Stationary Office, London

    Google Scholar 

  20. Sih GC (1973) Handbook of stress intensity factors. Lehigh University, Pennsylvania

    MATH  Google Scholar 

  21. Sneedon IN (1946) The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc R Soc Lond A 187:229–260

    Article  MathSciNet  Google Scholar 

  22. Tada H, Paris P, Irwin G (1973, 1987) The stress analysis of cracks handbook. Del Research Corporation, St. Louis

    Google Scholar 

  23. Wells AA (2000) George Rankin Irwin 26 February 1907 to 9 October 1998: Elected foreign member of the Royal Society. Biogr Mems Fell R Soc 46:269–283

    Google Scholar 

  24. Westergaard HM (1939) Bearing pressures and cracks. J Appl Mech 49:A49–A53

    Google Scholar 

  25. Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Banks-Sills .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Banks-Sills, L. (2018). Introduction. In: Interface Fracture and Delaminations in Composite Materials. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-60327-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60327-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60326-1

  • Online ISBN: 978-3-319-60327-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics