Skip to main content

Genetic Basis for Increased Risk for Vascular Diseases in Diabetes

  • Chapter
  • First Online:
Book cover Mechanisms of Vascular Defects in Diabetes Mellitus

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 17))

  • 1465 Accesses

Abstract

Over the last several decades, the global incidence and prevalence of diabetes mellitus has increased significantly. The raised incidence rate is projected to continue as greater numbers of persons adopt a western lifestyle and diet. Patients with diabetes mellitus are at heightened risk of both adverse microvascular and macrovascular complications. Moreover, once cardiovascular disease develops, diabetes mellitus exacerbates progression and worsens outcomes. The risk of cardiovascular diseases associated with diabetes is probably due to genetic determinants influencing both glucose homeostasis and development of atherosclerosis. Although many genetic factors for both CAD and diabetes have been discovered, bringing important insights towards pathogenesis of these diseases. But there is comparatively less progress in our understanding of genetic basis of diabetic vascular complications. Genome wide association studies are beginning to expand our horizon of understanding of genetic architecture relating to diabetic complications that might offer an opportunity for improved risk prediction along with development of new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Diabetes Federation (IDF) (2015) Available from:www.idf.org

  2. World Health Organization (2016) Global report on diabetes. World Health Organization, Geneva

    Google Scholar 

  3. Rao CR, Kamath VG, Shetty A, Kamath A (2011) A cross-sectional analysis of obesity among a rural population in coastal Southern Karnataka, India. Australas Med J 4(1):53–57

    Article  PubMed Central  PubMed  Google Scholar 

  4. Mohan V, Deepa R (2006) Obesity and abdominal obesity in Asian Indians. Indian J Med Res 123(5):593–596

    CAS  PubMed  Google Scholar 

  5. Mohan V, Shah S, Saboo B (2013) Current glycemic status and diabetes related complications among type 2 diabetes patients in India: data from the A1chieve study. JAPI (Suppl) 61:12–15

    Google Scholar 

  6. Mohan V, Seshiah V, Sahay BK, Shah SN, Rao PV, Banerjee S (2012) Current status of management of diabetes and glycaemic control in India: preliminary results from the DiabCare India 2011 Study. Diabetes 61:a645–a677

    Article  Google Scholar 

  7. Misra A, Khurana L (2011) Obesity-related non-communicable diseases: South Asians vs White Caucasians. Int J Obes 35(2):167–187

    Article  CAS  Google Scholar 

  8. Unnikrishnan RI, Rema M, Pradeep R, Deepa M, Shanthirani CS, Deepa R, Mohan V (2007) Prevalence and risk factor of diabetic nephropathy in an urban south Indian population; the Chennai urban rural Epidemiology Study (CurES-45). Diabetes Care 30:2019–2024

    Article  CAS  PubMed  Google Scholar 

  9. Ramachandran A, Snehalatha C, Kapur A, Vijay V, Mohan V, Das AK, Rao PV, Yajnik CS, Prasanna Kumar KM, Nair JD (2001) Diabetes Epidemiology Study Group in India (DESI). High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia 44(9):1094–1101

    Article  CAS  PubMed  Google Scholar 

  10. Rema M, Premkumar S, Anitha B, Deepa R, Pradeepa R, Mohan V (2005) Prevalence of diabetic retinopathy in urban India: the Chennai urban rural Epidemiology Study (CurES) Eye Study I. Invest Ophthalmol Vis Sci 46:2328–2333

    Article  PubMed  Google Scholar 

  11. Pradeepa R, Rema M, Vignesh J, Deepa M, Deepa R, Mohan V (2008) Prevalence and risk factors for diabetic neuropathy in an urban south Indian population: the Chennai urban rural Epidemiology Study (CurES-55). Diabet Med 25:407–412

    Article  CAS  PubMed  Google Scholar 

  12. Premalatha G, Shanthi Rani CS, Deepa R, Markovitz J, Mohan V (2000) Prevalence and risk factors of peripheral vascular disease in a selected south Indian population – the Chennai urban Population Study (CuPS). Diabetes Care 23:295–1300

    Article  Google Scholar 

  13. Anjana RM, Pradeepa R, Deepa M, Datta M et al (2011) Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study. Diabetologia 54(12):3022–3027

    Article  CAS  PubMed  Google Scholar 

  14. Kaveeshwar SA, Cornwall J (2014) The current state of diabetes mellitus in India. Australas Med J 7(1):45–48

    Article  PubMed Central  PubMed  Google Scholar 

  15. Verma R, Khanna P, Mehta B (2012) National programme on prevention and control of diabetes in India: need to focus. Australas Med J 5(6):310–315

    Article  PubMed Central  PubMed  Google Scholar 

  16. Jain SK, Johri MS (2016) Study to know the prevalence of microvascular complications in type 2 diabetes mellitus patients. Int J Contemp Med Res 3(7):50.43. 2454-7379

    Google Scholar 

  17. Mohan D, Raj D, Shanthirani CS, Datta M, Unwin NC, Kapur A, Mohan V (2005) Awareness and knowledge of diabetes in Chennai – the Chennai Urban Rural Epidemiology Study [CURES-9]. J Assoc Physicians India 53:283–287

    PubMed  Google Scholar 

  18. Mohan V, Shanthirani CS, Deepa M, Datta M, Williams OD, Deepa R (2006) Community empowerment – a successful model for prevention of non-communicable diseases in India – the Chennai Urban Population Study (CUPS-17). J Assoc Physicians India 54:858–862

    CAS  PubMed  Google Scholar 

  19. Saul G, Alberti KGMM, Bennett P et al (2003) Follow-up report on the diagnosis of diabetes mellitus the expert committee on the diagnosis and classification of diabetes Mellitus. Diabetes Care 26(11):3160–3167

    Article  Google Scholar 

  20. Classification and Diagnosis of Diabetes (2016) American diabetes association. Diabetes Care 39(Supplement 1):S13–S22

    Article  CAS  Google Scholar 

  21. Joshi SR, Anjana RM, Deepa M, Pradeepa R, Bhansali A, Dhandania VK et al (2014) Prevalence of dyslipidemia in urban and rural India: the ICMR–INDIAB Study. PLoS One 9(5):e96808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mogensen CE, Christensen CK, Vittinghus E (1983) The stages of diabetic renal disease: with emphasis on the stage of incipient diabetic nephropathy. Diabetes 32:64–78

    Article  PubMed  Google Scholar 

  23. US Renal Data System. USRDS 1994 (1994) Annual data report. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda

    Google Scholar 

  24. Gall MA, Rossing P, Skott P, Damsbo P, Vaag A, Bech K, Dejgaard A, Lauritzen M, Lauritzen E, Hougaard P et al (1991) Prevalence of micro- and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin-dependent) diabetic patients. Diabetologia 34:655–661

    Article  CAS  PubMed  Google Scholar 

  25. Messent JW, Elliott TG, Hill RD, Jarrett RJ, Keen H, Viberti GC (1992) Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney Int 41:836–839

    Article  CAS  PubMed  Google Scholar 

  26. Microalbuminuria Collaborative Study Group United Kingdom (1993) Risk factors for development of microalbuminuria in insulin dependent diabetic patients: a cohort study. BMJ 306:1235–1239

    Article  Google Scholar 

  27. Kasiske BL, Kalil RS, Ma JZ, Liao M, Keane WF (1993) Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 118:129–138

    Article  CAS  PubMed  Google Scholar 

  28. Hirschl MM, Heinz G, Sunder-Plassmann G, Derfler K (1992) Renal replacement therapy in type 2 diabetic patients: 10 years’ experience. Am J Kidney Dis 20:564–568

    Article  CAS  PubMed  Google Scholar 

  29. Rischen-Vos J, van der Woude FJ, Tegzess AM, Zwinderman AH, Gooszen HC, van den Akker PJ, van Es LA (1992) Increased morbidity and mortality in patients with diabetes mellitus after kidney transplantation as compared with non-diabetic patients. Nephrol Dial Transplant 7:433–437

    CAS  PubMed  Google Scholar 

  30. John L, Sundar Rao PSS, Kanagasabapathy AS (1991) Prevalence of diabetic nephropathy in non-insulin dependent diabetics. Indian J Med Res 94:24–29

    CAS  PubMed  Google Scholar 

  31. Ramachandran A, Snehalatha C, Satyavani K, Latha E, Sasikala R, Vijay V (1999) Prevalence of vascular complications and their risk factors in type 2 diabetes. J Assoc Physicians India 47:1152–1156

    CAS  PubMed  Google Scholar 

  32. Samanta A, Burden AC, Jagger C (1991) A comparison of the clinical features and vascular’ complications of diabetes between migrant Asians and Caucasians in Leicester, U.K. Diabetes Res Clin Pract 14:205–214

    Article  CAS  PubMed  Google Scholar 

  33. Vishwanathan V, Snehlatha C, Shina K, Lalitha S, Ramachandran A (1999) Familial aggregation of diabetic kidney disease in type 2 diabetes in southern India. Diabetes Res Clin Pract 43:167–171

    Article  Google Scholar 

  34. Mani MK (1998) Patterns of renal disease in indigenous populations in India. Nephrology 4:S4–S7

    Article  Google Scholar 

  35. Tapp RJ, Shaw JE, de Courten MP, Dunstan DW, Welborn TA, Zimmet PZ, AusDiab Study Group (2003) Foot complications in type 2 diabetes: an Australian population-based study. Diabet Med 20:105–113

    Article  CAS  PubMed  Google Scholar 

  36. Gregg EW, Sorlie P, Paulose-Ram R, Gu Q, Eberhardt MS, Wolz M et al (2004) 1999–2000 national health and nutrition examination survey, prevalence of lower-extremity disease in the US adult population ≥ 40 years of age with and without diabetes: 1999–2000 national health and nutrition examination survey. Diabetes Care 27:1591–1597

    Article  PubMed  Google Scholar 

  37. Prevention of Blindness from Diabetic Retinopathy (2005) Report of a WHO consultation. Geneva

    Google Scholar 

  38. Guidelines for the Comprehensive Management of Diabetic Retinopathy in India (2008) A VISION 2020 the right to sight India publication

    Google Scholar 

  39. Rema M, Ponnaiya M, Mohan V (1996) Prevalence of retinopathy in non insulin dependent diabetes mellitus at a diabetes centre in Southern India. Diabetes Res Clin Pract 34:29–36

    Article  CAS  PubMed  Google Scholar 

  40. Raman R, Rani PK, Reddi Rachepalle S, Gnanamoorthy P, Uthra S, Kumaramanickavel G et al (2009) Prevalence of diabetic retinopathy in India: Sankara Nethralaya diabetic retinopathy epidemiology and molecular genetics study report 2. Ophthalmology 116:311–318

    Article  PubMed  Google Scholar 

  41. Namperumalsamy P, Kim R, Vignesh TP, Nithya N, Royes J, Gijo T et al (2009) Prevalence and risk factors for diabetic retinopathy: a population-based assessment from Theni District. South India Postgrad Med J 85:643–648

    Article  CAS  PubMed  Google Scholar 

  42. Narendran V, John RK, Raghuram A, Ravindran RD, Nirmalan PK, Thulasiraj RD (2002) Diabetic retinopathy among self-reported diabetics in Southern India: a population based assessment. Br J Ophthalmol 86:1014–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Dandona L, Dandona R, Naduvilath TJ, McCarty CA, Rao GN (1999) Population based assessment of diabetic retinopathy in an urban population in Southern India. Br J Ophthalmol 83:937–940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564

    Article  PubMed Central  PubMed  Google Scholar 

  45. International Diabetes Federation (2003) In: Gan D (ed) Diabetes atlas, 2nd edn. Brussels, Belgium

    Google Scholar 

  46. Linda SG, William HH, Smith PJ (1995) Mortality in non-insulin-dependent diabetes [A], 2nd edn. National Diabetes Data Group. Diabetes in America, Bethesda. NIH Publication NO.9521468

    Google Scholar 

  47. Ali MK, Narayan KM, Tandon N (2010) Diabetes and coronary heart disease: current perspectives. Indian J Med Res 132:584–597

    PubMed Central  PubMed  Google Scholar 

  48. Forouhi NG, Sattar N, Tillin T, McKeigue PM, Chaturvedi N (2006) Do known risk factors explain the higher coronary heart disease mortality in South Asian compared with European men? Prospective follow-up of the Southall and Brent studies, UK. Diabetologia 49:2580–2588

    Article  CAS  PubMed  Google Scholar 

  49. Mohan V, Venkatraman JV, Pradeepa R (2010) Epidemiology of cardiovascular disease in type 2 diabetes: the Indian scenario. J Diabetes Sci Technol 4:158–170

    Article  PubMed Central  PubMed  Google Scholar 

  50. Pradeepa R et al (2014) Prevalence of peripheral vascular disease and its association with carotid intima-media thickness and arterial stiffness in type 2 diabetes: the Chennai Urban Rural Epidemiology Study (CURES 111). Diab Vasc Dis Res 11:190–200

    Article  PubMed  Google Scholar 

  51. Walters DP, Gatling W, Mullee MA, Hill RD (1992) The prevalence, detection, and epidemiological correlates of peripheral vascular disease: a comparison of diabetic and non-diabetic subjects in an English community. Diabet Med 9:710–715

    Article  CAS  PubMed  Google Scholar 

  52. Marso SP, Hiatt WR (2006) Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol 47:921–929

    Article  PubMed  Google Scholar 

  53. Ramachandran A, Snehalatha C, Latha E, Satyavani K, Vijay V (1998) Clustering of cardiovascular risk factors in urban Asian Indians. Diabetes Care 21:967–971

    Article  CAS  PubMed  Google Scholar 

  54. Mohan V, Shanthirani S, Deepa R, Premalatha G, Sastry NG, Saroja R (2001) Chennai Urban Population Study (CUPS No. 4). Intra-urban differences in the prevalence of the metabolic syndrome in Southern India – the Chennai Urban Population Study (CUPS No. 4). Diabet Med 18:280–287

    Article  CAS  PubMed  Google Scholar 

  55. Boyle PJ (2007) Diabetes mellitus and macrovascular disease: mechanisms and mediators. Am J Med 120:S12–S17

    Article  CAS  PubMed  Google Scholar 

  56. Fagot-Campagna A, Rolka DB, Beckles GL, Gregg EW, Narayan KM (2000) Prevalence of lipid ablormalities, awareness, and treatment in US adults with diabetes. Diabetes 49(Suppl. 1):A78

    Google Scholar 

  57. Rosenson RS (2004) Clinical role of LDL and HDL subclasses and apolipoprotein measurement. ACC Curr J Rev 13:33–37

    Article  Google Scholar 

  58. Pontiroli AE, Capra F, Veglia F, Ferrari M, Xiang KS, Bell GI, Baroni MG, Galton DJ, Weaver JU, Hitman GA, Kopelman PG, Mohan V, Viswanathan M (1996) Genetic contribution of polymorphism of the GLUT1 and GLUT4 genes to the susceptibility to type 2 (non-insulin-dependent) diabetes mellitus in different populations. Acta Diabetol 33(3):193–197

    Article  CAS  PubMed  Google Scholar 

  59. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188

    Article  CAS  PubMed  Google Scholar 

  60. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  61. Badal SS, Danesh FR (2014) New insights into molecular mechanisms of diabetic kidney disease. Am J Kidney Dis 63(2 Suppl 2):S63–S83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Rask Madsen C, King GL (2013) Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 17:20–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Tirosh A, Iris Shai RD, Bitzur R et al (2008) Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diabetes Care 31(10):2032–2037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Joshi SR (2003) Metabolic syndrome – emerging clusters of the Indian phenotype. J Assoc Physicians India 51:445–446

    PubMed  Google Scholar 

  65. Deepa R, Sandeep S, Mohan V (2006) Abdominal obesity, visceral fat and type 2 diabetes- Asian Indian phenotype. In: Mohan V, GHR R (eds) Type 2 diabetes in South Asians: epidemiology, risk factors and prevention. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, pp 138–152

    Google Scholar 

  66. McGill HC Jr, McMahan CA (1998) Determinants of atherosclerosis in the young: Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Am J Cardiol 82:30T–36T

    Article  PubMed  Google Scholar 

  67. Geiss LS, Herman WH, Smith PJ (1995) National Diabetes Data Group. Diabetes in America. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, pp 233–257

    Google Scholar 

  68. Gotzsche O, Darwish A, Gotzsche L, Hansen LP, Sorensen KE (1996) Incipient cardiomyopathy in young insulin-dependent diabetic patients: a seven-year prospective Doppler echocardiographic study. Diabet Med 13:834–840

    Article  CAS  PubMed  Google Scholar 

  69. Mahgoub MA, Abd-Elfattah AS (1998) Diabetes mellitus and cardiac function. Mol Cell Biochem 180:59–64

    Article  CAS  PubMed  Google Scholar 

  70. Klein BEK, Klein R, Lee KE (2002) Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam. Diabetes Care 25(10):1790–1794

    Article  PubMed  Google Scholar 

  71. Haffner SM (2003) Pre-diabetes, insulin resistance, inflammation and CVD risk. Diabetes Res Clin Pract 61(Suppl 1):S9–S18

    Article  CAS  PubMed  Google Scholar 

  72. Laakso M (2010) Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture 2008. Diabetes Care 33(2):442–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50(5):567–575

    Article  CAS  PubMed  Google Scholar 

  74. Sandeep S, Gokulakrishnan K, Deepa M, Mohan V (2011) Insulin resistance is associated with increased cardiovascular risk in Asian Indians with normal glucose tolerance – the Chennai Urban Rural Epidemiology Study (CURES-66). J Assoc Physicians India 59:480–484

    CAS  PubMed  Google Scholar 

  75. Katsuki A, Sumida Y, Urakawa H et al (2003) Increased visceral fat and serum levels of triglyceride are associated with insulin resistance in Japanese metabolically obese, normal weight subjects with normal glucose tolerance. Diabetes Care 26:2341–2344

    Article  CAS  PubMed  Google Scholar 

  76. Lin KC, Tsai ST, Kuo SC, Tsay SL, Chou P (2007) Interrelationship between insulin resistance and menopause on the metabolic syndrome and its individual component among nondiabetic women in the kinmen study. Am J Med Sci 333:208–214

    Article  PubMed  Google Scholar 

  77. Marques-Vidal P, Bastardot F, von Känel R et al (2013) Association between circulating cytokine levels, diabetes and insulin resistance in a population-based sample (CoLaus study). Clin Endocrinol 78(2):232–241

    Article  CAS  Google Scholar 

  78. Olson NC, Callas PW, Hanley AJ et al (2012) Circulating levels of TNF-α are associated with impaired glucose tolerance, increased insulin resistance, and ethnicity: the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab 97:1032–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Dvorak RV, DeNino WF, Ades PA, Poehlman ET (1999) Phenotypic characteristics associated with insulin resistance in metabolically obese but normal-weight young women. Diabetes 48:2210–2214

    Article  CAS  PubMed  Google Scholar 

  80. Gerick JE (1998) The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocrinol Rev 19:491–503

    Article  Google Scholar 

  81. Gray RS, Fabsitz RR, Cowan LD, Lee ET, Howard BV, Savage PJ (1998) Risk factor clustering in the insulin resistance syndrome: the Strong Heart Study. Am J Epidemiol 148:869–878

    Article  CAS  PubMed  Google Scholar 

  82. Dechenes CJ, Verchere CB, Andrikopoulos S, Kahn SE (1998) Human aging is associated with parallel reductions in insulin and amylin release. Am J Phys 275:E785–E791

    CAS  Google Scholar 

  83. Humphriss DB, Stewart MW, Berrish TS, Barriocanal LA, Trajano LR, Ashworth LA, Brown MD et al (1997) Multiple metabolic abnormalities in normal glucose tolerant relatives of NIDDM families. Diabetologia 40:1185–1190

    Article  CAS  PubMed  Google Scholar 

  84. Grundy SM (1997) Small LDL, atherogenic dyslipidemia, and the metabolic syndrome. Circulation 95:1–4

    Article  CAS  PubMed  Google Scholar 

  85. Austin MA, Edwards KL (1996) Small, dense low density lipoproteins, the insulin resistance syndrome and noninsulin-dependent diabetes. Curr Opin Lipidol 7:167–171

    Article  CAS  PubMed  Google Scholar 

  86. Grundy SM (1998) Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol 81:18B–25B

    Article  CAS  PubMed  Google Scholar 

  87. Lamarche B, Tchernof A, Moorjani S, Cantin B, Dagenais GR, Lupien PJ, Despres JP (1997) Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study. Circulation 95:69–75

    Article  CAS  PubMed  Google Scholar 

  88. Grundy SM, Wilhelmsen L, Rose G, Campbell RWF, Assman G (1990) Coronary heart disease in high-risk populations: lessons from Finland. Eur Heart J 11:462–471

    Article  CAS  PubMed  Google Scholar 

  89. Mohan V, Deepa R, Velmurugan K, Gokulakrishnan K (2005) Association of small dense LDL with coronary artery diseas and diabetes in urban asian Indians-the Chennai rural Epidemiological Study (CURES8). J Assoc Physicians India 53:95–100

    CAS  PubMed  Google Scholar 

  90. Eckel RH, Wassef M, Sobel B, Barrett E, King G, Lopes-Virella, Reusch J, Ruderman N, Steiner G, Vlassara H (2002) AHA conference proceedings prevention conference VI diabetes and cardiovascular disease writing group II: pathogenesis of atherosclerosis in diabetes. Circulation 105:e138–e143

    Article  PubMed  Google Scholar 

  91. Kulkarni KR, Markovitz JH, Nanda NC, Segrest JP (1999) Increased prevalence of smaller and denser ldl particles in Asian Indians. Arterioscler Thromb Vasc Biol 19:2749–2755

    Article  CAS  PubMed  Google Scholar 

  92. Sarat Chandra K, Bansal M, Nair T et al (2014) Consensus statement on management of dyslipidemia in Indian subjects. Indian Heart J 66(Suppl 3):S1–S51

    Article  PubMed Central  PubMed  Google Scholar 

  93. Gupta R, Guptha S, Agrawal A, Kaul V, Gaur K, Gupta VP (2008) Secular trends in cholesterol lipoproteins and triglycerides and prevalence of dyslipidemias in an urban Indian population. Lipids Health Dis 7:40–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Brezinka V, Padmos I (1994) Coronary heart disease risk factors in women. Eur Heart J 15:1571–1584

    Article  CAS  PubMed  Google Scholar 

  95. Lawes CM, Vander Hoorn S, Rodgers A, International Society of Hypertension (2008) Global burden of blood-pressure-related disease, 2001. Lancet 371(9623):1513

    Article  PubMed  Google Scholar 

  96. Deepa R, Arvind K, Mohan V (2002) Diabetes and risk factors for coronary artery disease. Curr Sci 83(12):1497–1505

    CAS  Google Scholar 

  97. Nelson RG, Pettitt DJ, Baird HR, Charles MA, Liu QZ, Bennett PH, Knowler WC (1993) Pre-diabetic blood pressure predicts urinary albumin excretion after the onset of type 2 (non-insulin-dependent) diabetes mellitus in Pima Indians. Diabetologia 36:998–1001

    Article  CAS  PubMed  Google Scholar 

  98. Grundy SM (1998) Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol 81((4) Supplement 1):18B–25B

    Article  CAS  PubMed  Google Scholar 

  99. Devi P, Rao M, Sigamani A, Faruqui A, Jose M, Gupta R et al (2013) Prevalence, risk factors and awareness of hypertension in India: a systematic review. J Hum Hypertens 27:281–287

    Article  CAS  PubMed  Google Scholar 

  100. Anchala R, Kannuri NK, Pant H, Khan H, Franco OH et al (2014) Hypertension in India: a systematic review and meta-analysis of prevalence, awareness, and control of hypertension. J Hypertens 32(6):1170–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. American Diabetes Association (2012) Diagnosis and classification of diabetes mellitus. Diabetes Care 35(Suppl 1):S64–S71

    Article  Google Scholar 

  102. Haffner SM (1997) Impaired glucose tolerance, insulin resistance, and cardiovascular disease. Diabet Med 14:S12–S18

    Article  PubMed  Google Scholar 

  103. Laakso M, Lehto S (1998) Epidemiology of risk factors for cardiovascular disease in diabetes and impaired glucose tolerance. Atherosclerosis 137:S65–S73

    Article  CAS  PubMed  Google Scholar 

  104. Jialal I, Devaraj S (2001) Inflammation and atherosclerosi: the value of the high-sensitivity C-reactive protein assay as a risk marker. Am J Clin Pathol 116(Suppl):S108–S115

    PubMed  Google Scholar 

  105. Festa A, D’Agostino R Jr, Howard G, Mykkänen L, Tracy RP, Haffner SM (2000) Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 102(1):42–47

    Article  CAS  PubMed  Google Scholar 

  106. Sattar N, Gaw A, Scherbakova O et al (2003) Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease Deedwania and Fonseca diabetes and cardiovascular risk 945 and diabetes in the west of Scotland coronary prevention study. Circulation 108:414–419

    Article  CAS  PubMed  Google Scholar 

  107. Mohan V, Mathur P, Deepa R, Deepa M, Shukla DK, Menon GR, Anand K, Desai NG, Joshi PP, Mahanta J, Thankappan KR, Shah B (2008) Urban rural differences in prevalence of self-reported diabetes in India – the WHO-ICMR Indian NCD risk factor surveillance. Diabetes Res Clin Pract 80(1):159–168

    Article  PubMed  Google Scholar 

  108. Mahajan A, Tabassum R, Chavali S et al (2009) High-sensitivity C-reactive protein levels and type 2 diabetes in urban North Indians. J Clin Endocrinol Metab 94(6):2123–2127

    Article  CAS  PubMed  Google Scholar 

  109. Mahajan A, Jaiswal A, Tabassum R et al (2012) Elevated levels of C-reactive protein as a risk factor for metabolic syndrome in Indians. Atherosclerosis 220(1):275–281

    Article  CAS  PubMed  Google Scholar 

  110. Jaiswal A, Tabassum R, Podder A et al (2012) Elevated level of C-reactive protein is associated with risk of prediabetes in Indians. Atherosclerosis 222(2):495–501

    Article  CAS  PubMed  Google Scholar 

  111. Ridker PM, Rifai N, Rose L et al (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347:1557–1565

    Article  CAS  PubMed  Google Scholar 

  112. Chambers JC, Eda S, Bassett P, Karim Y, Thompson SG, Gallimore JR, Pepys MB, Kooner JS (2001) C-reactive protein, insulin resistance, central obesity, and coronary heart disease risk in Indian Asians from the United Kingdom compared with European whites. Circulation 104(2):145–150

    Article  CAS  PubMed  Google Scholar 

  113. Hsieh MC, Tien KJ, Chang SJ, Perng DS, Hsiao JY, Chen YW, Chang YH, Kuo HW, Lin PC (2008) High-sensitivity C-reactive protein and silent myocardial ischemia in Chinese with type 2 diabetes mellitus. Metabolism 57:1533–1538

    Article  CAS  PubMed  Google Scholar 

  114. Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27(3):813–823

    Article  PubMed  Google Scholar 

  115. van Guldener C, DA Stehouwer C (2003) Homocysteine and cardiovascular complications in diabetes. Diabetes Voice 48(3):31–33

    Google Scholar 

  116. Pang X, Liu J, Zhao J, Mao J, Zhang X, Feng L et al (2014) Homocysteine induces the expression of C – reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis 236:73–81

    Article  CAS  PubMed  Google Scholar 

  117. Okura T, Miyoshi K, Irita J, Enomoto D, Nagao T, Kukida M et al (2014) Hyperhomocysteinemia is one of the risk factors associated with cerebrovascular stiffness in hypertensive patients, especially elderly males. Naturecom Sci Rep 4:5663

    Article  CAS  PubMed  Google Scholar 

  118. Zhang S, Yong-Yi B, Luo LM, Xiao WK, Wu HM, Ye P (2014) Association between serum homocysteine and arterial stiffness in elderly: a community-based study. J Geriatr Cardiol 11:32–38

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Grarup N, Sandholt CH, Hansen T et al (2014) Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia 57:1528–1541

    Article  CAS  PubMed  Google Scholar 

  120. Tabassum R, Chauhan G, Dwivedi OP, Mahajan A et al (2013) Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes 62(3):977–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ et al (1994) A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371(6493):130–136

    Article  CAS  PubMed  Google Scholar 

  122. Hunter DJ, Kraft P (2007) Drinking from the fire hose – statistical issues in genome wide association studies. N Engl J Med 357(5):436–439

    Article  CAS  PubMed  Google Scholar 

  123. Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298(5602):2345–2349

    Article  CAS  PubMed  Google Scholar 

  124. King H, Rewers M (1993) Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. WHO Ad Hoc Diabetes Reporting Group. Diabetes Care 16(1):157–177

    Article  CAS  PubMed  Google Scholar 

  125. Barroso I (2005) Genetics of type 2 diabetes. Diabet Med 22(5):517–535

    Article  CAS  PubMed  Google Scholar 

  126. Breslow JL (2001) Genetic markers for coronary heart disease. Clin Cardiol 24(Suppl. II):11-14-11-1

    Google Scholar 

  127. Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49(12):2201–2207

    Article  CAS  PubMed  Google Scholar 

  128. Amini M, Janghorbani M (2007) Diabetes and impaired glucose regulation in first-degree relatives of patients with type 2 diabetes in Isfahan, Iran: prevalence and risk factors. Rev Diabet Stud 4(3):169–176

    Article  PubMed Central  PubMed  Google Scholar 

  129. Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H (1999) Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study. Diabetologia 42(2):139–145

    Article  CAS  PubMed  Google Scholar 

  130. Anjana RM et al (2015) Incidence of diabetes and prediabetes and predictors of progression among Asian Indians: 10-year follow-up of the Chennai Urban Rural Epidemiology Study (CURES). Diabetes Care 38:1441–1448

    Article  PubMed  Google Scholar 

  131. Barakat K, Hitman GA (2001) Genetic susceptibility to macrovascular complications of type 2 diabetes mellitus. Best Pract Res Clin Endocrinol Metab 15:359–370

    Article  CAS  PubMed  Google Scholar 

  132. Lange LA, Bowden DW, Langefeld CD et al (2002) Heritability of carotid artery intima-medial thickness in type 2 diabetes. Stroke 33:1876–1881

    Article  PubMed  Google Scholar 

  133. Watkins WS, Prasad BV, Naidu JM et al (2005) Diversity and divergence among the tribal populations of India. Ann Hum Genet 69:680–692

    Article  CAS  PubMed  Google Scholar 

  134. Xing J, Watkins WS, Hu Y et al (2010) Genetic diversity in India and the inference of Eurasian population expansion. Genome Biol 11:R113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Saxena R, Saleheen D, Been LF, Garavito ML, Braun T et al (2013) GenomeWide Association Study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes 62:1746–1755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Phani NM, Nagri SK, Satyamoorthy K, Rai PS (2016) Replication and relevance of multiple susceptibility loci discovered from genome wide association studies for type 2 diabetes in an Indian population. PLoS One 11(6):1–13. ISSN 1932-6203

    Article  CAS  Google Scholar 

  137. Ali S, Chopra R, Manvati S, Singh YP, Kaul N et al (2013) Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups. PLoS One 8:e58881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Turner RC, Millns H, Neil HA et al (1998) Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 316:823–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Ray KK, Seshasai SR, Wijesuriya S et al (2009) Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 373:1765–1772

    Article  CAS  PubMed  Google Scholar 

  140. Shah AD, Langenberg C, Rapsomaniki E et al (2015) Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol 3:105–113

    Article  PubMed Central  PubMed  Google Scholar 

  141. Yang X, So WY, Kong AP et al (2008) Development and validation of a total coronary heart disease risk score in type 2 diabetes mellitus. Am J Cardiol 101:596–601

    Article  PubMed  Google Scholar 

  142. Sone H, Tanaka S, Iimuro S et al (2012) Comparison of various lipid variables as predictors of coronary heart disease in Japanese men and women with type 2 diabetes: subanalysis of the Japan Diabetes Complications Study. Diabetes Care 35:1150–1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Nathan DM, Cleary PA, Backlund JY et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653

    Article  PubMed  Google Scholar 

  144. Holman RR, Paul SK, Bethel MA et al (2008) 10 year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589

    Article  CAS  PubMed  Google Scholar 

  145. Wing RR, Bolin P, Brancati FL et al (2013) Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 369:145–154

    Article  CAS  PubMed  Google Scholar 

  146. Look AHEAD Research Group (2014) Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol 2:801–809

    Article  Google Scholar 

  147. Semple RK, Krishna V, Chatterjee K, O’Rahilly S (2006) PPAR and human metabolic disease. J Clin Invest 116:581–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trend Endocrinol Metabol 11(8):327–332

    Article  CAS  Google Scholar 

  149. Plutzky J (2004) Inflammation in atherosclerosis and diabetes Mellitus. Rev Endocrinol Metab 5:255–259

    CAS  Google Scholar 

  150. Mori H, Ikegami H, Kawaguchi Y, Seino S, Yokoi N, Takeda J, Inoue I, Seino Y, Yasuda K, Hanafusa T (2001) The Pro12 -->Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes 50(4):891–894

    Article  CAS  PubMed  Google Scholar 

  151. Meshkani R, Taghikhani M, Larijani B, Bahrami Y, Khatami S, Khoshbin E, Ghaemi A, Sadeghi S, Mirkhani F, Molapour A, Adeili K (2007) Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPARγ-2) gene is associated with greater insulin sensitivity and decreased risk of type 2 diabetes in an Iranian population. Clin Chem Lab Med 45(4):477–482

    Article  CAS  PubMed  Google Scholar 

  152. Frederiksen L, Brodbaek K, Fenger M, Jorgensen T, Borch-Johnsen K, Madsbad S, Urhammer SA (2002) Comment: studies of the Pro12Ala polymorphism of the PPAR-gamma gene in the Danish MONICA cohort: homozygosity of the Ala allele confers a decreased risk of the insulin resistance syndrome. J Clin Endocrinol Metab 87(8):3989–3992

    CAS  PubMed  Google Scholar 

  153. Memisoglu A, Hu FB, Hankinson SE, Liu S, Meigs JB, Altshuler DM, Hunter DJ, Manson JE (2003) Prospective study of the association between the proline to alanine codon 12 polymorphism in the PPAR gamma gene and type 2 diabetes. Diabetes Care 26(10):2915–2917

    Article  CAS  PubMed  Google Scholar 

  154. Sanghera DK, Demirci FY, Been L (2010) PPARG and ADIPOQ gene polymorphisms increase type 2diabetes mellitus risk in Asian Indian Sikhs: pro12ala still remains a strongest predictor. Metabolism 59:492–501

    Article  CAS  PubMed  Google Scholar 

  155. Zhou A, Chen J, Xu W (2011) Association between C1431T polymorphism in peroxisome proliferator-activated receptor-γ gene and coronary artery disease in chinese han population. Mol Biol Rep 39:1863–1868

    Article  CAS  PubMed  Google Scholar 

  156. Cauchi S, Meyre D, Dena C, Choquet H, Samson C, Gallina S, Balakau B, Charpentier G, Pattou F, Stetsyuk V, Scharfmann R, Stails B, Fruchbeck G, Froguel P (2006) Transcription factor TCF7L2 genetic study in French population: expression in human beta cells and adipose tissue and strong association with T2D. Diabetes 55:2903–2908

    Article  CAS  PubMed  Google Scholar 

  157. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    Article  CAS  PubMed  Google Scholar 

  158. Tong Y, Lin Y, Zhang Y, Yang J, Zhang Y et al (2009) Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med Genet 10:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, Nejjari C, Patsch W, Chikri M, Meyre D, Froguel P (2007) TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med 85:777–782

    Article  CAS  PubMed  Google Scholar 

  160. Chandak GR, Janipalli CS, Bhaskar S, Kulkarni SR, Mohankrishna P, Hattersley AT, Frayling TM, Yajnik CS (2007) Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia 50:63–67

    Article  CAS  PubMed  Google Scholar 

  161. Hayashi T, Iwamoto Y, Kaku K, Hirose H, Maeda S (2007) Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a Japanese population. Diabetologia 50:980–984

    Article  CAS  PubMed  Google Scholar 

  162. Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A et al (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 59(8):2068–2074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Khan IA, Poornima S, Jahan P, Rao P, Hasan Q (2015) Type 2 diabetes mellitus and the association of candidate genes in Asian Indian population from Hyderabad, India. J Clin Diagn Res: JCDR 9(11):GC01–GC05

    PubMed Central  PubMed  Google Scholar 

  164. Sanghera DK, Nath SK, Ortega L, Gambarelli M, Kim-Howard X et al (2008) TCF7L2 polymorphisms are associated with type 2 diabetes in Khatri Sikhs from North India: genetic variation affects lipid levels. Ann Hum Genet 72:499–509

    Article  CAS  PubMed  Google Scholar 

  165. Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK et al (2008) Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 Pro12Ala, IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet 9:59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Bodhini D, Radha V, Dhar M, Narayani N, Mohan V (2007) The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism 56:1174–1178

    Article  CAS  PubMed  Google Scholar 

  167. Sousa AG, Selvatici L, Krieger JE, Pereira AC (2011) Association between genetics of diabetes, coronary artery disease, and macrovascular complications: exploring a common ground hypothesis. Rev Diabet Stud 8(2):230–244

    Article  PubMed Central  PubMed  Google Scholar 

  168. Zhou JB, Yang JK, Lu JK, An YH (2010) Angiotensin-converting enzyme gene polymorphism is associated with type 2 diabetes: a meta-analysis. Mol Biol Rep 37(1):67–73

    Article  CAS  PubMed  Google Scholar 

  169. Niu W, Qi Y, Gao P, Zhu D (2010) Angiotensin converting enzyme D allele is associated with an increased risk of type 2 diabetes: evidence from a meta-analysis. Endocr J 57(5):431–438

    Article  CAS  PubMed  Google Scholar 

  170. Raza ST, Fatima J, Ahmed F, Abbas S, Zaidi SH, Singh S, Mahdi F (2013) Association of angiotensin converting enzyme (ACE) and fatty acid binding protein 2 (FABP2) genes polymorphism with type 2 diabetes mellitus in Northern India. JRAAS 20:1–8

    Google Scholar 

  171. Vishwanathan V, Zhu Y, Bala K (2001) Association between ACE gene polymorphism and diabetic nephropathy in South Indian patients. J Pancreas 20:83–87

    Google Scholar 

  172. Bhavani BA, Padma T, Sastry BK (2006) The insertion deletion polymorphism of angiotensin converting enzyme (ACE) gene increase the susceptibility to hypertention and/or diabetes. Int J Hum Genet 20:247–252

    Google Scholar 

  173. Hajeer AH, Hutchinson IV (2000) TNF-alpha gene polymorphism: clinical and biological implications. Microsc Res Tech 50(3):216–228

    Article  CAS  PubMed  Google Scholar 

  174. Moller DE (2000) Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 11(6):212–217

    Article  CAS  PubMed  Google Scholar 

  175. Feg R, Li Y, Zhao D, Wang C, Niu Y, Sun C (2009) Lack of association between TNF 238 G/A polymorphism and type 2 diabetes: a meta-analysis. Acta Diabetol 46(4):339–343

    Article  CAS  Google Scholar 

  176. Feng RN, Zhao C, Sun CH, Li Y (2011) Meta-analysis of TNF 308 G/A polymorphism and type 2 diabetes mellitus. PLoS One 6(4):e18480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Boonyasrisawat W et al (2007) Tag polymorphisms at the A20 (TNFAIP3) locus are associated with lower gene expression and increased risk of coronary artery disease in type 2 diabetes. Diabetes 56(2):499–505

    Article  CAS  PubMed  Google Scholar 

  178. Tabassum R, Chavali S, Mahajan A, Ghosh S, Madhu SV et al (2008) Association analysis of TNFRSF1B polymorphisms with type 2 diabetes and its related traits in North India. Genomic Med 2(3–4):93–100

    Article  PubMed  Google Scholar 

  179. Tabassum R, Mahajan A, Chauhan G, Dwivedi OP, Dubey H, Sharma V et al (2011) No association of TNFRSF1B variants with type 2 diabetes in Indians of Indo-European origin. BMC Med Genet 12:110. http://doi.org/10.1186/1471-2350-12-110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Heid IM, Wagner SA, Gohlke H, Iglseder B, Mueller JC, Cip P, Ladurner G, Reiter R, Stadlmayr A, Mackevics V et al (2006) Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians. Diabetes 55(2):375–384

    Article  CAS  PubMed  Google Scholar 

  181. Kawano J, Arora R (2009) The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr 4(1):44–49

    Article  PubMed  Google Scholar 

  182. Okamoto Y, Kihara S, Ouchi N et al (2002) Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106(22):2767–2770

    Article  CAS  PubMed  Google Scholar 

  183. Yamauchi T, Kamon J, Waki H et al (2003) Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem 278(4):2461–2468

    Article  CAS  PubMed  Google Scholar 

  184. Shibata R, Izumiya Y, Sato K et al (2007) Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J Mol Cell Cardiol 42(6):1065–1074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Fujita K, Maeda N, Sonoda M et al (2008) Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-α Arteriosclerosis. Thromb, Vasc Biol 28(5):863–870

    Article  CAS  Google Scholar 

  186. Khodeer SA, Abdu-Allah AM, El-Azeem WFA, Mahfouz RG, Khamis S (2011) Adiponectin single nucleotide polymorphism 45T/G and its relationship to adiponectin level in Egyptian patients with type 2 diabetes mellitus. J Pharm Biomed Sci 1(5):87–92

    Google Scholar 

  187. Mohammad Zaden G, Zarghami N (2009) Associations between single-nucleotide polymorphisms of the adiponectin gene, serum adiponectin levels and increasedrisk of type 2 diabetes mellitus in Iranian obese individuals. J Sci Clin Lab Invest 15:1–8

    Google Scholar 

  188. Nandi A, Kitamura Y, Kahn CR, Accili D (2004) Mouse models of insulin resistance. Physiol Rev 84:623–647

    Article  CAS  PubMed  Google Scholar 

  189. Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R (2001) Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 15:2099–2111

    Article  CAS  PubMed  Google Scholar 

  190. Lim S et al (2013) Common variants in and near IRS1 and subclinical cardiovascular disease in the Framingham Heart Study. Atherosclerosis 229(1):149–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Bacci S et al (2013) Joint effect of insulin signaling genes on cardiovascular events and on whole body and endothelial insulin resistance. Atherosclerosis 226(1):140–145

    Article  CAS  PubMed  Google Scholar 

  192. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1998) Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett 19:57–60

    Article  Google Scholar 

  193. Kao YL, Donaghue K, Chan A, Knight J, Silink M (1998) A variant of paraoxonase (PON1) gene is associated with diabetic retinopathy in IDDM. J Clin Endocrinol Metab 19:2589–2592

    Article  Google Scholar 

  194. Baier LJ, Permana PA, Yang X et al (2000) A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J Clin Invest 106:R69–R73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Sreenan SK, Zhou YP, Otani K et al (2001) Calpains play a role in insulin secretion and action. Diabetes 50:2013–2020

    Article  CAS  PubMed  Google Scholar 

  196. Tripathy D, Eriksson KF, Orho-Melander M, Fredriksson J, Ahlqvist G, Groop L (2004) Parallel manifestation of insulin resistance and beta cell decompensation is compatible with a common defect in type 2 diabetes. Diabetologia 47:782–793

    Article  CAS  PubMed  Google Scholar 

  197. Goodarzi MO et al (2005) Association of the diabetes gene calpain-10 with subclinical atherosclerosis: the Mexican-American Coronary Artery Disease Study. Diabetes 54(4):1228–1232

    Article  CAS  PubMed  Google Scholar 

  198. Silander K, Mohlke KL, Scott LJ et al (2004) Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes. Diabetes 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  199. Marcil V, Amre D, Seidman EG, Boudreau F, Gendron FP, Ménard D et al (2015) Hepatocyte nuclear factor 4 alpha polymorphisms and the metabolic syndrome in French-Canadian youth. PLoS One 10(2):e0117238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Collot-Teixeira S, Martin J, McDermott-Roe C et al (2007) CD36 and macrophages in atherosclerosis. Cardiovasc Res 75:468–477

    Article  CAS  PubMed  Google Scholar 

  201. Ley K, Laudanna C, Cybulsky MI et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    Article  CAS  PubMed  Google Scholar 

  202. Osterud B, Bjorklid E (2003) Role of monocytes in atherogenesis. Physiol Rev 83(4):1069–1112

    Article  CAS  PubMed  Google Scholar 

  203. Liang C, Han S, Okamoto H et al (2004) Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Investig 113(5):764–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Febbraio M, Silverstein RL (2007) CD36: implications in cardiovascular disease. Int J Biochem Cell Biol 39(11):2012–2030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Rathcke CN, Johansen JS, Vestergaard H (2006) YKL – 40, a biomarker of inflammation, is elevated in patients with type 2 diabetes and is related to insulin resistance. Inflamm Res 55(2):53–59

    Article  CAS  PubMed  Google Scholar 

  206. Walter EG, Kirk B, Kay AL et al (2010) α-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One 5(supplement 5.):11 pages):e10883

    Google Scholar 

  207. Karatela RA, Sainani GS (2010) Interrelationships of factor VII activity and plasma leptin with insulin resistance in coronary heart disease. Atherosclerosis 209(1):235

    Article  CAS  PubMed  Google Scholar 

  208. Zhang MH, Na B, Schiller NB, Whooley MA (2011) Association of resistin with heart failure and mortality in patients with stable coronary heart disease: data from the heart and soul study. J Card Fail 17(1):24–30

    Article  CAS  PubMed  Google Scholar 

  209. Fischer CP, Perstrup LB, Berntsen A, Eskildsen P, Pedersen BK (2005) Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol 117(2):152–160

    Article  CAS  PubMed  Google Scholar 

  210. Gavi S, Stuart LM, Kelly P, Melendez MM, Mynarcik DC, Gelato MC, McNurlan MA (2007) Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in non-obese subjects without type 2 diabetes. J Clin Endocrinol Metab 92(5):1886–1890

    Article  CAS  PubMed  Google Scholar 

  211. Weigert J, Neumeier M, Wanninger J, Filarsky M, Bauer S, Wiest R, Farkas S, Scherer MN, Schäffler A, Aslanidis C, Schölmerich J, Buechler C (2010) Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin Endocrinol 72(3):342–348

    Article  CAS  Google Scholar 

  212. Asleh R, Levy AP (2005) In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease. Vasc Health Risk Manag 1(1):19–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Pettersson-Fernholm K, Forsblom C, Hudson BI et al (2003) The functional − 374 T/A RAGE gene polymorphism is associated with proteinuria and cardiovascular disease in type 1 diabetic patients. Diabetes 52:891–894

    Article  CAS  PubMed  Google Scholar 

  214. Kretowski A, McFann K, Hokanson JE et al (2007) Polymorphisms of the rennin-angiotensin system genes predict progression of subclinical coronary atherosclerosis. Diabetes 56:863–871

    Article  CAS  PubMed  Google Scholar 

  215. Elbein SC, Hasstedt SJ (2002) Quantitative trait linkage analysis of lipid-related traits in familial type 2 diabetes: evidence for linkage of triglyceride levels to chromosome 19q. Diabetes 51:528–535

    Article  CAS  PubMed  Google Scholar 

  216. Malhotra A, Wolford JK (2005) Analysis of quantitative lipid traits in the genetics of NIDDM (GENNID) study. Diabetes 54:3007–3014

    Article  CAS  PubMed  Google Scholar 

  217. Bowden DW, Rudock M, Ziegler J et al (2006) Coincident linkage of type 2 diabetes, metabolic syndrome, and measures of cardiovascular disease in a genome scan of the diabetes heart study. Diabetes 55:1985–1994

    Article  CAS  PubMed  Google Scholar 

  218. Ruiz J, Blanche H, Cohen N (1994) Insertion/deletion polymorphism of the angiotensin-convering enzume gene is strongly associated with with coronary heart disease in NIDDM. Proc Natl Acad Sci U S A 91:3662–3665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Wang Y, Ng MC, So WY et al (2005) Prognostic effect of insertion/deletion polymorphism of the ace gene on renal and cardiovascular clinical outcomes in Chinese patients with type 2 diabetes. Diabetes Care 28:348–354

    Article  CAS  PubMed  Google Scholar 

  220. Goldstein BJ, Scalia R (2004) Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 89:2563–2568

    Article  CAS  PubMed  Google Scholar 

  221. Qi L, Doria A, Manson JE et al (2006) Adiponectin genetic variability, plasma adiponectin, and cardiovascular risk in patients with type 2 diabetes. Diabetes 55:1512–1516

    Article  CAS  PubMed  Google Scholar 

  222. Li L, Cheng LX, Nsenga R et al (2006) Association between Pro12Ala polymorphism of peroxisome proliferator activated receptor gamma 2 and myocardial infarction in the Chinese Han population. Clin Cardiol 29:300–304

    Article  PubMed  Google Scholar 

  223. Ho JS, Germer S, Tam CH et al (2012) Association of the PPARG Pro12Ala polymorphism with type 2 diabetes and incident coronary heart disease in a Hong Kong Chinese population. Diabetes Res Clin Pract 97:483–491

    Article  CAS  PubMed  Google Scholar 

  224. Wang Y, Luk AO, Ma RC et al (2010) Independent predictive roles of eotaxin Ala23Thr, paraoxonase 2 Ser311Cys and beta-adrenergic receptor Trp64Arg polymorphisms on cardiac disease in type 2 diabetes–an 8 year prospective cohort analysis of 1297 patients. Diabet Med 27:376–383

    Article  CAS  PubMed  Google Scholar 

  225. Iacoviello L, Donati MB (1998) Blood coagulation factor VII activity and the risk of myocardial infarction: the novel identification of a genetic protection that can be mimicked by an old drug. G Ital Cardiol 28(6):718–721

    CAS  PubMed  Google Scholar 

  226. Semenkovich CF, Heinecke JW (1997) The mystery of diabetes and atherosclerosis: time for a new plot. Diabetes 46(3):327–334

    Article  CAS  PubMed  Google Scholar 

  227. Sakai T, Matsuura B, Onji M (1998) Serum paraoxonase activity and genotype distribution in Japanese patients with diabetes mellitus. Intern Med 37(7):581–584

    Article  CAS  PubMed  Google Scholar 

  228. Odawara M, Tachi Y, Yamashita K (1997) Paraoxonase polymorphism (Gln192-Arg) is associated with coronary heart disease in Japanese noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 82(7):2257–2260

    Article  CAS  PubMed  Google Scholar 

  229. Osei-Hyiaman D, Hou L, Mengbai F, Zhiyin R, Zhiming Z et al (2001) Coronary artery disease risk in Chinese type 2 diabetics: is there a role for paraxonase 1 gene (Q192R) polymorphism? Eur J Endocrinol 144(6):639–644

    Article  CAS  PubMed  Google Scholar 

  230. Pfohl M, Koch M, Enderle MD, Kuhn R, Fullhase J et al (1999) Paraoxonase 192 Gln/Arg gene polymorphism, coronary artery disease, and myocardial infarction in type 2 diabetes. Diabetes 48(3):623–627

    Article  CAS  PubMed  Google Scholar 

  231. Aubo C, Senti M, Marrugat J, Tomas M, Vila J et al (2000) Risk of myocardial infarction associated with Gln/Arg 192 polymorphism in the human paraoxonase gene and diabetes mellitus. The REGICOR investigators. Eur Heart J 21(1):33–38

    Article  CAS  PubMed  Google Scholar 

  232. Leviev I, Negro F, James RW (1997) Two alleles of the human paraoxonase gene produce different amounts of mRNA. An explanation for differences in serum concentrations of paraoxonase associated with the (Leu-Met54) polymorphism. Arterioscler Thromb Vasc Biol 17(11):2935–2939

    Article  CAS  PubMed  Google Scholar 

  233. James RW, Leviev I, Ruiz J, Passa P, Froguel P et al (2000) Promoter polymorphism T(−107)C of the paraoxonase PON1 gene is a risk factor for coronary heart disease in type 2 diabetic patients. Diabetes 49(8):1390–1393

    Article  CAS  PubMed  Google Scholar 

  234. Dahabreh IJ, Kitsios GD, Kent DM, Trikalinos TA (2010) Paraoxonase 1 polymorphisms and ischemic stroke risk: a systematic review and meta-analysis. Genetics Med: Off J Am Coll Med Genet 12(10):606–615

    Article  CAS  Google Scholar 

  235. Kawasaki I, Tahara H, Emoto M, Shoji T, Nishizawa Y (2002) Relationship between TaqIB cholesteryl ester transfer protein gene polymorphism and macrovascular complications in Japanese patients with type 2 diabetes. Diabetes 51(3):871–874

    Article  CAS  PubMed  Google Scholar 

  236. Durlach A, Clavel C, Girard-Globa A, Durlach V (1999) Sex dependent association of a genetic polymorphism of cholesteryl ester transfer protein with high-density lipoprotein cholesterol and macrovascular pathology in type II diabetic patients. J Clin Endocrinol Metab 84(10):3656–3659

    Article  CAS  PubMed  Google Scholar 

  237. Kawasaki I, Tahara H, Emoto M, Shoji T, Nishizawa Y (2002) Relationship between TaqIB cholesteryl ester transfer protein gene polymorphism and macrovascular complications in Japanese patients with type 2 diabetes. Diabetes 51(3):871–874

    Article  CAS  PubMed  Google Scholar 

  238. Meguro S, Takei I, Murata M, Hirose H, Takei N et al (2001) Cholesteryl ester transfer protein polymorphism associated with macroangiopathy in Japanese patients with type 2 diabetes. Atherosclerosis 156(1):151–156

    Article  CAS  PubMed  Google Scholar 

  239. Mansfield MW, Stickland MH, Grant PJ (1995) Plasminogen activator inhibitor-1 (PAI-1) promoter polymorphism and coronary artery disease in non-insulin-dependent diabetes. Thromb Haemost 74(4):1032–1034

    CAS  PubMed  Google Scholar 

  240. Iacoviello L, Burzotta F, Di Castelnuovo A, Zito F, Marchioli R et al (1998) The 4G/5G polymorphism of PAI-1 promoter gene and the risk of myocardial infarction: a meta-analysis. Thromb Haemost 80(6):1029–1030

    CAS  PubMed  Google Scholar 

  241. Lam KS, Ma OC, Wat NM, Chan LC, Janus ED (1999) Beta fibrinogen gene G/A-455 polymorphism in relation to fibrinogen concentrations and ischaemic heart disease in Chinese patients with type II diabetes. Diabetologia 42(10):1250–1253

    Article  CAS  PubMed  Google Scholar 

  242. Carter AM, Mansfield MW, Stickland MH, Grant PJ (1996) Betafibrinogen gene-455 G/A polymorphism and fibrinogen levels. Risk factors for coronary artery disease in subjects with NIDDM. Diabetes Care 19(11):1265–1268

    Article  CAS  PubMed  Google Scholar 

  243. Erdmann J, Grosshennig A, Braund PS, Konig IR, Hengstenberg C et al (2009) New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet 41(3):280–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  244. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678

    Article  CAS  Google Scholar 

  245. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156

    Article  CAS  PubMed  Google Scholar 

  246. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316(5830):1491–1493

    Article  CAS  PubMed  Google Scholar 

  247. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316(5830):1488–1491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  248. Doria A, Wojcik J, Xu R et al (2008) Interaction between poor glycemic control and 9p21 locus on risk of coronary artery disease in type 2 diabetes. JAMA 300:2389–2397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  249. Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17(6):806–814

    Article  CAS  PubMed  Google Scholar 

  250. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M et al (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357(5):443–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  251. Jarinova O, Stewart AF, Roberts R, Wells G, Lau P et al (2009) Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol 29(10):1671–1677

    Article  CAS  PubMed  Google Scholar 

  252. Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D et al (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41(3):334–341

    Article  CAS  PubMed  Google Scholar 

  253. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K et al (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264(5157):436–440

    Article  CAS  PubMed  Google Scholar 

  254. Visel A, Zhu Y, May D, Afzal V, Gong E et al (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464(7287):409–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. Cheng X, Shi L, Nie S, Wang F, Li X et al (2011) The same chromosome 9p21.3 locus is associated with type 2 diabetes and coronary artery disease in a Chinese Han population. Diabetes 60(2):680–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  256. Novelli G, Predazzi IM, Mango R, Romeo F, Mehta JL (2010) Role of genomics in cardiovascular medicine. World J Cardiol 2(12):428–436

    Article  PubMed Central  PubMed  Google Scholar 

  257. Qi L, Qi Q, Prudente S et al (2013) Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310:821–828

    Article  CAS  PubMed  Google Scholar 

  258. Van Zuydam NR (2013) Abstracts of the 49th Annual Meeting of the EASD: known SNPs in ADAMTS7, the 9p21 region and UBE2E interact with type 2 diabetes status to modify the risk of coronary artery disease in large populations. Diabetologia 56(Suppl. 1):S76–S77

    Google Scholar 

  259. Thorgeirsson TE et al (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452:638–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  260. Ong KK, Phillips DI, Fall C et al (1999) The insulin gene VNTR, type 2 diabetes and birth weight. Nat Genet 21:262–263

    Article  CAS  PubMed  Google Scholar 

  261. Huxtable SJ, Saker PJ, Haddad L et al (2000) Analysis of parent-offspring trios provides evidence for linkage and association between the insulin gene and type 2 diabetes mediated exclusively through paternally transmitted class III variable number tandem repeat alleles. Diabetes 49:126–130

    Article  CAS  PubMed  Google Scholar 

  262. Consortium CAD et al (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45(1):25–33

    Google Scholar 

  263. Peden JF, Farrall M (2011) Thirty-five common variants for coronary artery disease: the fruits of much collaborative labour. Hum Mol Genet 20(R2):R198–R205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  264. Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17(9):502–510

    Article  CAS  PubMed  Google Scholar 

  265. Uma Jyothi K, Jayaraj M, Subburaj KS, Prasad KJ, Kumuda I, Lakshmi V et al (2013) Association of TCF7L2 gene polymorphisms with T2DM in the population of Hyderabad, India. PLoS One 8:e60212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  266. Kumar J, Yumnam S, Basu T, Ghosh A, Garg G, Karthikeyan G et al (2011) Association of polymorphisms in 9p21 region with CAD in North Indian population: replication of SNPs identified through GWAS. Clin Genet 79:588–593

    Article  CAS  PubMed  Google Scholar 

  267. Kommoju UJ, Maruda J, Kadarkarai S, Irgam K, Kotla JP, Velaga L et al (2013) No detectable association of IGF2BP2 and SLC30A8 genes with type 2 diabetes in the population of Hyderabad, India. Meta Gene 1:15–23

    Article  PubMed Central  PubMed  Google Scholar 

  268. Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P et al (2009) A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat Genet 41:187–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  269. Deloukas P, Kanoni S, Willenborg C et al (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45:25–33

    Article  CAS  PubMed  Google Scholar 

  270. O’Donnell CJ, Nabel EG (2011) Genomics of cardiovascular disease. N Engl J Med 365:2098–2109

    Article  PubMed  Google Scholar 

  271. Wu C, Gong Y, Yuan J et al (2012) Identification of shared genetic susceptibility locus for coronary artery disease, type 2 diabetes and obesity: a meta-analysis of genome-wide studies. Cardiovasc Diabetol 11:68

    Article  PubMed Central  PubMed  Google Scholar 

  272. Helgadottir A, Thorleifsson G, Manolescu A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493

    Article  CAS  PubMed  Google Scholar 

  273. Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  274. Dauriz M, Meigs JB (2014) Current insights into the joint genetic basis of type 2 diabetes and coronary heart disease. Curr Cardiovasc Risk Rep 8:368

    Article  PubMed Central  PubMed  Google Scholar 

  275. Qi L, Parast L, Cai T et al (2011) Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. J Am Coll Cardiol 58:2675–2682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  276. Cox AJ, Hsu FC, Ng MC et al (2014) Genetic risk score associations with cardiovascular disease and mortality in the Diabetes Heart Study. Diabetes Care 37:1157–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  277. Tregouet DA, Konig IR, Erdmann J, Munteanu A, Braund PS, Hall AS, Grosshennig A, Linsel-Nitschke P, Perret C, DeSuremain M et al (2009) Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet 41(3):283–285

    Article  CAS  PubMed  Google Scholar 

  278. Villeneuve LM, Reddy MA, Natarajan R (2011) Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol 38:451–459

    Article  CAS  PubMed  Google Scholar 

  279. Liu L, Li Y, Tollefsbol TO (2008) Gene-environment interactions and epigenetic basis of human diseases. Curr Issues Mol Biol 10:25–36

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Ronn T, Ling C (2013) Effect of exercise on DNA methylation and metabolism in human adipose tissue and skeletal muscle. Epigenomics 5:603–605

    Article  CAS  PubMed  Google Scholar 

  281. Reddy MA, Natarajan R (2011) Epigenetics in diabetic kidney disease. J Am Soc Nephrol 22:2182–2185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  282. Bechtel W et al (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16:544–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Kato M, Natarajan R (2014) Diabetic nephropathy – emerging epigenetic mechanisms. Nat Rev Nephrol 10:517–530

    Article  CAS  PubMed  Google Scholar 

  284. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D (2008) Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57:1349–1354

    Article  CAS  PubMed  Google Scholar 

  285. Hammes HP, Klinzing I, Wiegand S, Bretzel RG, Cohen AM, Federlin K (1993) Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Invest Ophthalmol Vis Sci 34:2092–2096

    CAS  PubMed  Google Scholar 

  286. Abi KC (2014) The emerging role of epigenetics in cardiovascular disease. Ther Adv Chronic Dis 5(4):178–187. This recent review paper summarized the implication of epigenetics in atherosclerosis and major cardiac pathologies

    Article  CAS  Google Scholar 

  287. Zhang Q et al (2012) Gene expression profiling in glomeruli of diabetic nephropathy rat. Exp Biol Med (Maywood) 237:903–911

    Article  CAS  Google Scholar 

  288. Bell CG et al (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genet 3:33

    Google Scholar 

  289. Li Q, Chen L, Chen D, Wu X, Chen M (2015) Influence of microRNArelated polymorphisms on clinical outcomes in coronary artery disease. Am J Transl Res 7(2):393–400

    CAS  PubMed Central  PubMed  Google Scholar 

  290. Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM et al (2012) Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 60(4):290–299. This study is the most comprehensive on the prognostic role of miRNAs in coronary artery disease

    Article  CAS  PubMed  Google Scholar 

  291. Goretti E, Wagner DR, Devaux Y (2014) miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol Med 20(12):716–725

    Article  CAS  PubMed  Google Scholar 

  292. Motawae TM, Ismail MF, Shabayek MI, Seleem MM (2015) MicroRNAs 9 and 370 association with biochemical markers in T2D and CAD complication of T2D. PLoS One 10(5):e0126957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  293. Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S et al (2013) Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1and isabrogatedinglucose-damagedendothelial microparticles. Circulation 128(18):2026–2038

    Article  CAS  PubMed  Google Scholar 

  294. Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R (2008) Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci U S A 105:9047–9052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  295. Syreeni A, El-Osta A, Forsblom C, Sandholm N, Parkkonen M, Tarnow L, Parving HH, AJ MK, Maxwell AP, Cooper ME, Groop PH, FinnDiane Study G (2011) Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes. Diabetes 60:3073–3080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  296. Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, Lee HB (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol 297:F729–F739

    Article  CAS  PubMed  Google Scholar 

  297. Kullo IJ, Leeper NJ (2015) The genetic basis of peripheral arterial disease: current knowledge, challenges, and future directions. Circ Res 116(9):1551–1560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  298. Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R et al (2011) Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123(3):282–291

    Article  CAS  PubMed  Google Scholar 

  299. Stather PW, Sylvius N, Wild JB, Choke E, Sayers RD, Bown MJ (2013) Differential microRNA expression profiles in peripheral arterial disease. Circ Cardiovasc Genet 6(5):490–497

    Article  CAS  PubMed  Google Scholar 

  300. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 11:726–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  301. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  302. Cooke Bailey JN, Palmer ND, Ng MC et al (2014) Analysis of coding variants identified from exome sequencing resources for association with diabetic and non-diabetic nephropathy in African Americans. Hum Genet 133:769–779

    Article  CAS  Google Scholar 

  303. Horikoshi M, Pasquali L, Wiltshire S, Huyghe JR, Mahajan A et al (2016) Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Hum Mol Genet 25(10):2070–2081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwaipayan Bharadwaj Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Crown Copyright

About this chapter

Cite this chapter

Bharadwaj, D., Singh, A. (2017). Genetic Basis for Increased Risk for Vascular Diseases in Diabetes. In: Kartha, C., Ramachandran, S., Pillai, R. (eds) Mechanisms of Vascular Defects in Diabetes Mellitus. Advances in Biochemistry in Health and Disease, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-60324-7_2

Download citation

Publish with us

Policies and ethics