Skip to main content

Adipokines and Vascular Disease in Diabetes

  • Chapter
  • First Online:
  • 1363 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 17))

Abstract

Adipose tissue is currently considered an endocrine organ. It releases adipokines with autocrine, paracrine and endocrine functions that regulate, among other homeostatic processes, inflammation, fat distribution, satiety and vascular function. It is important to highlight that, during obesity, the pattern of secreted molecules can change towards an overproduction of proinflammatory, diabetogenic and pro atherogenic ones. In diabetic patients, vascular dysfunction is an important risk factor for cardiovascular diseases. Considering the importance of adipokines in vascular function, here we present a brief review of the relevant aspects involved in the influence of adipokines in the establishment of vascular diseases in diabetes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Scherer PE (2016) The multifaceted roles of adipose tissue-therapeutic targets for diabetes and beyond: the 2015 banting lecture. Diabetes 65(6):1452–1461. doi:10.2337/db16-0339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mori T, Koyama Y, Maeda N, Nakamura Y et al (2014) Ultrastructural localization of adiponectin protein in vasculature of normal and atherosclerotic mice. Sci Rep 4:4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blüher M (2014) Adipokines – removing road blocks to obesity and diabetes therapy. Mol Metab 3:230–240. doi:10.1016/j.molmet.2014.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  4. Van de Voorde J, Pauwels B, Boydens C, Decaluwé K (2013) Adipocytokines in relation to cardiovascular disease. Metabolism 62(11):1513–1521. doi:10.1016/j.metabol.2013.06.004

    Article  PubMed  Google Scholar 

  5. Freitas Lima LC, Braga VA, do Socorro de França Silva M, Cruz JC et al (2015) Adipokines, diabetes andatherosclerosis: an inflammatory association. Front Physiol 3(6):304. doi:10.3389/fphys.2015.00304

    Google Scholar 

  6. Ebrahimi-Mamaeghani M, Mohammadi S, Arefhosseini SR, Fallah P et al (2015) Adiponectin as a potential biomarker of vascular disease. Vasc Health Risk Manag 16(11):55–70. doi:10.2147/VHRM.S48753

    Google Scholar 

  7. Esser N, Paquot N, Scheen AJ (2015) Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 24(3):283–307

    Article  CAS  PubMed  Google Scholar 

  8. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura K, Fuster JJ, Walsh K (2014) Adipokines: a link between obesity and cardiovascular disease. J Cardiol 63(4):250–259. doi:10.1016/j.jjcc.2013.11.006

    Article  PubMed  Google Scholar 

  10. Lastra G, Manrique C (2015) Perivascular adipose tissue, inflammation and insulin resistance: link to vascular dysfunction and cardiovascular disease. Horm Mol Biol Clin Invest 22(1):19–26. doi:10.1515/hmbci-2015-0010

    CAS  Google Scholar 

  11. Yudkin JS, Eringa E, Stehouwer CD (2005) “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365(9473):1817–1820

    Article  Google Scholar 

  12. Villacorta L, Chang L (2015) The role of perivascular adipose tissue invasoconstriction, arterial stiffness, and aneurysm. Horm Mol Biol Clin Invest 21(2):137–147. doi:10.1515/hmbci-2014-0048

    CAS  Google Scholar 

  13. Carbone F, Mach F, Montecucco F (2015) The role of adipocytokines in atherogenesis and atheroprogression. Curr Drug Targets 16:295–320

    Article  CAS  PubMed  Google Scholar 

  14. Julia C, Czernichow S, Charnaux N, Ahluwalia N et al (2014) Relationships between adipokines, biomarkers of endothelial function and inflammation and risk of type 2 diabetes. Diabetes Res Clin Pract 105(2):231–238. doi:10.1016/j.diabres.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  15. Ronti T, Lupattelli G, Mannarino E (2006) The endocrine function of adipose tissue: an update. Clin Endocrinol 64(4):355–365

    CAS  Google Scholar 

  16. Yamauchi T, Kamon J, Ito Y, Tsuchida A et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:6941. doi:10.1038/nature01705

    Article  Google Scholar 

  17. Scheid MP, Sweeney G (2014) The role of adiponectin signaling in metabolic syndrome and cancer. Rev Endocr Metab Disord 15:157–167. doi:10.1007/s11154-013-9265-5

    Article  CAS  PubMed  Google Scholar 

  18. Yamauchi T, Nio Y, Maki T, Kobayashi M et al (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13:332–339. doi:10.1038/nm1557

    Article  CAS  PubMed  Google Scholar 

  19. Deng G, Long Y, Yu YR et al (2010) Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS pathway. Int J Obes 34:165–171

    Article  CAS  Google Scholar 

  20. Jang C, Inder WJ, Obeyesekere VR, Alford FP (2008) Adiponectin, skeletal muscle adiponectin receptor expression and insulin resistance following dexamethasone. Clin Endocrinol 69:745–750. doi:10.1111/j.1365-2265.2008.03242.x

    Article  CAS  Google Scholar 

  21. Margaritis M, Antonopoulos AS, Digby J et al (2013) Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 127(22):2209–2221

    Article  CAS  PubMed  Google Scholar 

  22. Huang PH, Chen JS, Tsai HY, Chen YH et al (2011) Globular adiponectin improves high glucose-suppressed endothelial progenitor cell function through endothelial nitric oxide synthase dependent mechanisms. J Mol Cell Cardiol 51:109–119. doi:10.1016/j.yjmcc.2011.03.008

    Article  PubMed  Google Scholar 

  23. Issan Y, Hochhauser E, Kornowski R, Leshem-Lev D et al (2012) Endothelial progenitor cell function inversely correlates with long-term glucose control in diabetic patients: association with the attenuation of the hemeoxygenase-adiponectin axis. Can J Cardiol 28:728–736. doi:10.1016/j.cjca.2012.01.013

    Article  PubMed  Google Scholar 

  24. Fisman EZ, Tenenbaum A (2014) Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetologia 13:103. doi:10.1186/1475-2840-13-103

    Article  Google Scholar 

  25. Ouchi N, Kihara S, Arita Y, Okamoto Y et al (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102(11):1296–1301

    Article  CAS  PubMed  Google Scholar 

  26. Abdel-Hamid AA, Firgany A-D (2016) Favorable outcomes of hydroxychloroquine in insulin resistance may be accomplished by adjustment of the endothelial dysfunction as well as the skewed balance of adipokines. Acta Histochem 118(6):560–573. doi:10.1016/j.acthis.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  27. Jadoon KA, Ratcliffe SH, Barrett DA, Thomas EL et al (2016) Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care 39(10):1777–1786. doi:10.2337/dc16-0650

    Article  PubMed  Google Scholar 

  28. Mallat Z, Tedgui A (2007) Cytokines as regulators of atherosclerosis in murine models. Curr Drug Targets 8(12):1264–1272

    Article  CAS  PubMed  Google Scholar 

  29. Xu J, Mukerjee S, Silva-Alves CR, Carvalho-Galvão A et al (2016) A disintegrin and metalloprotease 17 in the cardiovascular and central nervous systems. Front Physiol 18(7):469

    CAS  Google Scholar 

  30. Chavey C, Mari B, Monthouel MN, Bonnafous S et al (2003) Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 278:11888–11896. doi:10.1074/jbc.M209196200

    Article  CAS  PubMed  Google Scholar 

  31. Cardellini M, Menghini R, Luzi A, Davato F et al (2011) Decreased IRS2 and TIMP3 expression in monocytes from offspring of type 2 diabetic patients is correlated with insulin resistance and increased intima-media thickness. Diabetes 60:3265–3270. doi:10.2337/db11-0162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Menghini R, Fiorentino L, Casagrande V, Lauro R et al (2013) The role of ADAM-17 in metabolic inflammation. Atherosclerosis 228:12–17. doi:10.1016/j.atherosclerosis.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  33. Kumada M, Kihara S, Ouchi N, Kobayashi Het al. (2004) Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 109:2046–2049. doi:10.1161/01.CIR.0000127953.98131.ED

    Article  CAS  PubMed  Google Scholar 

  34. Steyers CM 3rd, Miller FJ Jr (2014) Endothelial dysfunction in chronic inflammatory diseases. Int J Mol Sci 15(7):11324–11349. doi:10.3390/ijms150711324

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marcos-Ramiro B, García-Weber D, Millán J (2014) TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost 112:1088–1102. doi:10.1160/TH14-04-0299

    Article  CAS  PubMed  Google Scholar 

  36. Ziccardi P, Nappo F, Giugliano G, Esposito K et al (2002) Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 105(7):804–809

    Article  CAS  PubMed  Google Scholar 

  37. Tatsch E, De Carvalho JA, Hausen BS, Bollick YS et al (2015) Oxidative DNA damage is associated with inflammatory response, insulin resistance and microvascular complications in type 2 diabetes. Mutat Res 782:17–22. doi:10.1016/j.mrfmmm.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  38. Du G, Song Y, Zhang T, Ma Let al. (2014) Simvastatin attenuates TNFα-induced apoptosis in endothelial progenitor cells via the upregulation of SIRT1. Int J Mol Med 34:177–182. doi:10.3892/ijmm.2014.1740

    PubMed  Google Scholar 

  39. Krysiak R, Żmuda W, Okopień B (2014) The effect of short-term simvastatin treatment on plasma adipokine levels in patients with isolated hypercholesterolemia: a preliminary report. Pharmacol Rep 66:880–884. doi:10.1016/j.pharep.2014.05.012

    Article  CAS  PubMed  Google Scholar 

  40. Skurk T, Alberti-Hube C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033. doi:10.1210/jc.2006-1055

    Article  CAS  PubMed  Google Scholar 

  41. Schuett H, Luchtefeld M, Grothusen C, Grote K et al (2009) How much is too much? Interleukin-6 and its signalling in atherosclerosis. Thromb Haemost 102:215–222. doi:10.1160/th09-05-0297

    CAS  PubMed  Google Scholar 

  42. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874. doi:10.1038/nature01323

    Article  CAS  Google Scholar 

  43. Matthews V, Schuster B, Schütze S, Bussmeyer I et al (2003) Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem 278:38829–38839. doi:10.1074/jbc.M210584200

    Article  CAS  PubMed  Google Scholar 

  44. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta, Mol Cell Res 1813:878–888. doi:10.1016/j.bbamcr.2011.01.034

    Article  CAS  PubMed  Google Scholar 

  45. Qu D, Liu J, Lau CW, Huang Y (2014) IL-6 in diabetes and cardiovascular complications. Br J Pharmacol 171(15):3595–3603. doi:10.1111/bph.12713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Speck N, Brandsch C, Schmidt N, Yazdekhasti N et al (2015) The antiatherogenic effect of fish oil in male mice is associated with a diminished release of endothelial ADAM17 and ADAM10 substrates. J Nutr 145:1218–1226. doi:10.3945/jn.115.211375

    Article  CAS  PubMed  Google Scholar 

  47. Brasier AR (2010) The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 86(2):211–218. doi:10.1093/cvr/cvq076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Ma L, Peng F, Wu Y et al (2011) The endothelial dysfunction in patients with type 2 diabetes mellitus is associated with IL-6gene promoter polymorphism in Chinese population. Endocrine 40(1):124–129. doi:10.1007/s12020-011-9442-9

    Article  PubMed  Google Scholar 

  49. Chen Q, Fisher DT, Clancy KA, Gauguet JMM et al (2006) Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol 7:1299–1308. doi:10.1038/ni1406

    Article  CAS  PubMed  Google Scholar 

  50. Girn HR, Orsi NM, Homer-Vanniasinkam S (2007) An overview of cytokine interactions in atherosclerosis and implications for peripheral arterial disease. Vasc Med 12(4):299–309

    Article  CAS  PubMed  Google Scholar 

  51. Balarini CM, Leal MA, Gomes IB, Pereira TM et al (2013) Sildenafil restores endothelial function in the apolipoprotein E knockout mouse. J Transl Med 11:3. doi:10.1186/1479-5876-11-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cotter MA, Gibson TM, Nangle MR, Cameron NE (2010) Effects of interleukin-6treatment on neurovascular function, nerve perfusion and vascular endothelium in diabetic rats. Diabetes Obes Metab 12(8):689–699. doi:10.1111/j.1463-1326.2010.01221.x

    Article  CAS  PubMed  Google Scholar 

  53. Lowe G, Woodward M, Hillis G, Rumley A et al (2014) Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: the ADVANCE study. Diabetes 63(3):1115–1123. doi:10.2337/db12-1625

    Article  CAS  PubMed  Google Scholar 

  54. Bhagat K, Vallance P (1997) Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo. Circulation 96(9):3042–3047

    Article  CAS  PubMed  Google Scholar 

  55. Tang WB, Zhou YQ, Zhao T, Shan JL et al (2011) Effect of interleukin-6 (IL-6) on the vascular smooth muscle contraction in abdominal aorta of rats with streptozotocin-induced diabetes. Chin J Phys 54(5):318–323

    CAS  Google Scholar 

  56. Herbrig K, Haensel S, Oelschlaegel U, Pistrosch F et al (2006) Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann Rheum Dis 65:157–163. doi:10.1136/ard.2005.035378

    Article  CAS  PubMed  Google Scholar 

  57. Watanabe N, Ikeda U (2004) Matrix metalloproteinases and atherosclerosis. Curr Atheroscler Rep 65:112–120. doi:10.1007/s11883-004-0099-1

    Article  Google Scholar 

  58. Zhang Y, Proenca R, Maffei M, Barone M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432. doi:10.1038/372425a0

    Article  CAS  PubMed  Google Scholar 

  59. Scotece M, Conde J, Gómez R, López V et al (2012) Role of adipokines in atherosclerosis: interferences with cardiovascular complications in rheumatic diseases. Mediat Inflamm 2012:125458. doi:10.1155/2012/125458

    Article  Google Scholar 

  60. Amitani M, Asakawa A, Amitani H, Inui A (2013) The role of leptin in the control of insulin-glucose axis. Front Neurosci 7:51. doi:10.3389/fnins.2013.00051

    Article  PubMed  PubMed Central  Google Scholar 

  61. Koh KK, Park SM, Quon MJ (2012) Leptin and cardiovascular diseases: response to therapeutic interventions. Circulation 117:3238–3249. doi:10.1161/CIRCULATIONAHA.107.741645

    Article  Google Scholar 

  62. Mark AL, Correia MLG, Rahmouni K, Haynes WG (2002) Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J Hypertens 20:1245–1250. doi:10.1097/00004872-200207000-00001

    Article  CAS  PubMed  Google Scholar 

  63. Adya R, Tan BK, Randeva HS (2015) Differential effects of leptin and adiponectin in endothelial angiogenesis. J Diabetes Res 2015:1–12. doi:10.1155/2015/648239

    Article  Google Scholar 

  64. Husain K (2015) Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem 6:209. doi:10.4331/wjbc.v6.i3.209

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dong F, Zhang X, Ren J (2006) Leptin regulates cardiomyocyte contractile function through endothelin-1 receptor-NADPH oxidase pathway. Hypertension 47:222–229. doi:10.1161/01.HYP.0000198555.51645.f1

    Article  CAS  PubMed  Google Scholar 

  66. Schroeter MR, Stein S, Heida NM, Leifheit-Nestler M et al (2012) Leptin promotes the mobilization of vascular progenitor cells and neovascularization by NOX2-mediated activation of MMP9. Cardiovasc Res 93:170–180. doi:10.1093/cvr/cvr275

    Article  CAS  PubMed  Google Scholar 

  67. Yamazaki Y, Emoto M, Morioka T, Kawano N et al (2013) Clinical impact of the leptin to soluble leptin receptor ratio on subclinical carotid atherosclerosis in patients with type 2 diabetes. J Atheroscler Thromb 20(2):186–194

    Article  CAS  PubMed  Google Scholar 

  68. Zeidan A, Purdham DM, Rajapurohitam V, Javadov S (2005) Leptin induces vascular smooth muscle cell hypertrophy through angiotensin II- and endothelin-1-dependent mechanisms and mediates stretch-induced hypertrophy. J Pharmacol Exp Ther 315:1075–1084. doi:10.1124/jpet.105.091561

    Article  CAS  PubMed  Google Scholar 

  69. Sari R, Balci MK, Apaydin C (2010) The relationship between plasma leptin levels andchronic complication in patients with type 2 diabetes mellitus. Metab Syndr Relat Disord 8(6):499–503. doi:10.1089/met.2009.0127

    Article  CAS  PubMed  Google Scholar 

  70. Morioka T, Emoto M, Yamazaki Y, Kawano N et al (2014) Leptin is associated with vascular endothelial function in overweight patients with type 2 diabetes. Cardiovasc Diabetol 13:10. doi:10.1186/1475-2840-13-10

    Article  PubMed  PubMed Central  Google Scholar 

  71. Martin SS, Qasim A, Reilly MP (2008) Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 52(15):1201–1210. doi:10.1016/j.jacc.2008.05.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winters B, Mo Z, Brooks-Asplund E, Kim S et al (2000) Reduction of obesity, as induced by leptin, reverses endothelial dysfunction in obese (Lep(ob)) mice. J Appl Physiol 89:2382–2390

    CAS  PubMed  Google Scholar 

  73. Yamagishi SI, Edelstein D, Du XL, Kaneda Y et al (2001) Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem 276:25096–25100. doi:10.1074/jbc.M007383200

    Article  CAS  PubMed  Google Scholar 

  74. Singh P, Peterson TE, Barber KR, Kuniyoshi FS et al (2010) Leptin upregulates the expression of plasminogen activator inhibitor-1 in human vascular endothelial cells. Biochem Biophys Res Commun 392:47–52. doi:10.1016/j.bbrc.2009.12.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille M. Balarini D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Balarini, C.M. (2017). Adipokines and Vascular Disease in Diabetes. In: Kartha, C., Ramachandran, S., Pillai, R. (eds) Mechanisms of Vascular Defects in Diabetes Mellitus. Advances in Biochemistry in Health and Disease, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-60324-7_12

Download citation

Publish with us

Policies and ethics