Skip to main content

Radiographic Assessment

  • Chapter
  • First Online:

Abstract

Although nearly universal in usage, traditional radiographic measurements for hallux abducto valgus have proven to have low reliability and validity for predicting surgical outcomes. Furthermore, radiographic algorithms have not led to agreement among surgeons for treatment methods and procedure selection. A review of traditional radiographic interpretation of hallux abducto valgus highlights the inconsistencies that presently exist. Weight-bearing computerized tomography of the foot has developed an improved understanding of foot pathomechanics and promises the hope of improved reliability of radiographic algorithms in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Laporta G, Melillo T, Olinsky D. X-ray evaluation of hallux abducto valgus deformity. J Am Podiatry Assoc. 1974;64:544–66.

    Google Scholar 

  2. Bryant A, Tinley P, Singer K. A comparison of radiographic measurements in normal, hallux valgus, and hallux limitus feet. J Foot Ankle Surg. 2000;39:39–43.

    Article  CAS  PubMed  Google Scholar 

  3. Condon F, Kaliszer M, Conhyea D, O’ Donnell T, Shaju A, Masterson E. The first intermetatarsal angle in hallux valgus: an analysis of measurement reliability and the error involved. Foot Ankle Int. 2002;23:717–21.

    Article  PubMed  Google Scholar 

  4. Kelikian H. Hallux valgus, allied deformities of the forefoot and metatarsalgia. Philadelphia: Saunders; 1965.

    Google Scholar 

  5. Inman VT. DuVries’ surgery of the foot. St Louis: Mosby; 1973.

    Google Scholar 

  6. Coughlin MJ, Mann RA. Hallux valgus and complications of the hallux. In: Mann RA, editor. Surgery of the foot and ankle. St Louis: CV Mosby; 1986. p. 65–131.

    Google Scholar 

  7. Ruch J, Banks A. First ray hallux Abducto valgus and related deformities. In: Dalton McGlammry E, editor. Comprehensive textbook of foot surgery. Baltimore, Md: Williams and Wilkins; 1987. p. 144–50.

    Google Scholar 

  8. Palladino SJ. Preoperative evaluation of the bunion patient. In: Gerbert, editor. Textbook of bunion surgery. 3rd ed. Philadelphia: W.B. Saunders; 2001. p. 3–71.

    Chapter  Google Scholar 

  9. Meyr AJ, Myers A, Pontious J. Descriptive quantitative analysis of hallux abductovalgus transverse plane radiographic parameters. J Foot Ankle Surg. 2014;53:397–404.

    Article  PubMed  Google Scholar 

  10. Coughlin MJ, Freund E. The reliability of angular measurements in hallux valgus deformities. Foot Ankle Int. 2001;22:369–79.

    Article  CAS  PubMed  Google Scholar 

  11. Coughlin MJ, Jones CP. Hallux valgus: demographics, etiology, and radiographic assessment. Foot Ankle Int. 2007;28:759–77.

    Article  PubMed  Google Scholar 

  12. Lee KM, Ahn S, Chung CY, Sung KH, Park MS. Reliability and relationship of radiographic measurements in hallux valgus. Clin Orthop Relat Res. 2012;470:2613–21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Coughlin MJ, Carlson RE. Treatment of hallux valgus with an increased distal metatarsal articular angle: evaluation of double and triple first ray osteotomies. Foot Ankle Int. 1999;20:762–70.

    Article  CAS  PubMed  Google Scholar 

  14. Richardson EG, Graves SC, McClure T, Boone RT. First metatarsal head- shaft angle- a method of determination. Foot Ankle. 1993;14:181–5.

    Article  CAS  PubMed  Google Scholar 

  15. Vittetoe DA, Saltzman CL, Krieg JC, Brown TD. Validity and reliability of the first distal metatarsal articular angle. Foot Ankle Int. 1994;15:541–7.

    Article  CAS  PubMed  Google Scholar 

  16. Martin DE. Preoperative radiographic evaluation in HAV surgery: a critical analysis of PASA and other soft tissue adaptation. Reconstructive Surgery of the Foot and Leg. 1993.

    Google Scholar 

  17. Chi TD, Davitt J, Younger A, Holt S, Sangeorzan BJ. Intra- and inter-observer reliability of the distal metatarsal articular angle in adult hallux valgus. Foot Ankle Int. 2002;23:722–6.

    Article  PubMed  Google Scholar 

  18. Robinson AHN, Cullen NP, Chhaya NC, Sri-Ram K, Lynch A. Variation of the distal metatarsal articular angle with axial rotation and inclination of the first metatarsal. Foot Ankle Int. 2006;27:1036–40.

    Article  PubMed  Google Scholar 

  19. Dayton P, Feilmeier M, Kauwe M, Hirschi J. Relationship of frontal plane rotation of first metatarsal to proximal articular set angle and hallux alignment in patients undergoing tarsometatarsal arthrodesis for hallux abducto valgus: a case series and critical review of the literature. J Foot Ankle Surg. 2013;52:348–54.

    Article  PubMed  Google Scholar 

  20. Jastifer JR, Coughlin MJ, Schutt S, et al. Comparison of radiographic and anatomic distal metatarsal articular angle in cadaver feet. Foot Ankle Int. 2014;35:389–93.

    Article  PubMed  Google Scholar 

  21. Piggott H. The natural history of hallux valgus in adolescence and early adult life. Bone Joint J. 1960;42-B:749–60.

    Google Scholar 

  22. Lapidus PW. The author’s bunion operation from 1931 to 1959. Clin Orthop. 1960;16:119–35.

    CAS  PubMed  Google Scholar 

  23. Morton DJ. The human foot. New York: Columbia University Press; 1935.

    Google Scholar 

  24. Vyas S, Conduah A, Vyas N, Otsuka NY. The role of the first metarsocuneiform joint in juvenile hallux valgus. J Pediatr Orthop B. 2010;19:399–402.

    Article  PubMed  Google Scholar 

  25. Burns PR, Mecham B. Biodynamics of hallux abductovalgus etiology and preoperative evaluation. Clin Podiatr Med Surg. 2014;31:197–212.

    Article  PubMed  Google Scholar 

  26. Doty JF, Coughlin MJ, Hirose C, et al. First metatarsocuneiform joint mobility: radiographic, anatomic, and clinical characteristics of the articular surface. Foot Ankle Int. 2014;35:504–11.

    Article  PubMed  Google Scholar 

  27. Saragas NP, Becker PJ. Comparative radiographic analysis of parameters in feet with and without hallux valgus. Foot Ankle Int. 1995;16:139–43.

    Article  CAS  PubMed  Google Scholar 

  28. Hatch DJ, Smith A, Fowler T. Radiographic relevance of the distal medial cuneiform angle in hallux valgus assessment. J Foot Ankle Surg. 2016;55:85–9.

    Article  PubMed  Google Scholar 

  29. Dietze A, Bahlke U, Martin H, Mittlmeier T. First ray instability in hallux valgus deformity: a radiokinematic and pedobarographic analysis. Foot Ankle Int. 2013;34:124–30.

    Article  PubMed  Google Scholar 

  30. King DM, Toolan BC. Associated deformities and hypermobility in hallux valgus: an investigation with weightbearing radiographs. Foot Ankle Int. 2004;25:251–5.

    Article  PubMed  Google Scholar 

  31. Roukis TS, Landsman AS. Hypermobility of the first ray: a critical review of the literature. J Foot Ankle Surg. 2003;42:377–390

    Google Scholar 

  32. Samimi R, Green DR, Malay DS. Evaluation of first metatarsophalangeal range of motion pre and post bunion surgery: a clinical and radiographic correlation with stress lateral dorsiflexion views; a retrospective approach. In: Podiatry Institute Update. 2009. p. 97–114.

    Google Scholar 

  33. Judge MS, LaPointe S, Yu GV, Shook JE, Taylor RP. The effect of hallux abducto valgus surgery on the sesamoid apparatus position. J Am Podiatr Med Assoc. 1999;89:551–9.

    Article  CAS  PubMed  Google Scholar 

  34. Okuda R, Kinoshita M, Yasuda T, Jotoku T, Kitano N, Shima H. Postoperative incomplete reduction of the sesamoids as a risk factor for recurrence of hallux valgus. J Bone Joint Surg Am. 2009;91:1637–45.

    Article  PubMed  Google Scholar 

  35. Hardy RH, Clapham J. Observations on hallux valgus. Bone Joint J. 1951;33-B:376–91.

    CAS  Google Scholar 

  36. Woo K, Yu I-S, Kim J-H, Sung K-S. Effect of lateral soft tissue release on sesamoid position in hallux valgus surgery. Foot Ankle Int. 2015;36:1463–8.

    Article  PubMed  Google Scholar 

  37. Geng X, Zhang C, Ma X, Wang X, Huang J, Xu J, Wang C. Lateral sesamoid position relative to the second metatarsal in feet with and without hallux valgus: a prospective study. J Foot Ankle Surg. 2016;55:136–9.

    Article  PubMed  Google Scholar 

  38. Talbot KD, Saltzman CL. Assessing sesamoid subluxation: how good is the AP radiograph? Foot Ankle Int. 1998;19:547–54.

    Article  CAS  PubMed  Google Scholar 

  39. Agrawal Y, Desai A, Mehta J. Lateral sesamoid position in hallux valgus: correlation with the conventional radiological assessment. Foot Ankle Surg. 2011;17:308–11.

    Article  PubMed  Google Scholar 

  40. Panchani S, Reading J, Mehta J. Inter and intra-observer reliability in assessment of the position of the lateral sesamoid in determining the severity of hallux valgus. The Foot 2016;27:59–61.

    Google Scholar 

  41. Kuwano T, Nagamine R, Sakaki K, Urabe K, Iwamoto Y. New radiographic analysis of sesamoid rotation in hallux valgus: comparison with conventional evaluation methods. Foot Ankle Int. 2002;23:811–7.

    Article  PubMed  Google Scholar 

  42. Dayton P, Kauwe M, Kauwe JSK, Feilmeier M, Hirschi J. Observed changes in first metatarsal and medial cuneiform positions after first metatarsophalangeal joint arthrodesis. J Foot Ankle Surg. 2014;53:32–5.

    Article  PubMed  Google Scholar 

  43. DiDomenico LA, Fahim R, Rollandini J, Thomas ZM. Correction of frontal plane rotation of sesamoid apparatus during the Lapidus procedure: a novel approach. J Foot Ankle Surg. 2014;53:248–51.

    Article  PubMed  Google Scholar 

  44. Morton DJ. Evolution of the human foot. Am J Phys Anthropol. 1922;5:305–36.

    Article  Google Scholar 

  45. Mizuno S, Sima Y, Yamazaki K. Detorsion osteotomy of the first metatarsal bone in hallux valgus. J Jpn Orthop Assoc. 1956;30:813–9.

    Google Scholar 

  46. Suzuki J, Tanaka Y, Takaoka T, Kadono K, Takakura Y. Axial radiographic evaluation in hallux valgus: evaluation of the transverse arch in the forefoot. J Orthop Sci. 2004;9:446–51.

    Article  PubMed  Google Scholar 

  47. Catanese D, Popowitz D, Gladstein AZ. Measuring sesamoid position in hallux valgus: when is the sesamoid axial view necessary? Foot Ankle Spec. 2014;7:457–9.

    Article  PubMed  Google Scholar 

  48. Yildirim Y, Cabukoglu C, Erol B, Esemenli T. Effect of metatarsophalangeal joint position on the reliability of the tangential sesamoid view in determining sesamoid position. Foot Ankle Int. 2005;26:247–50.

    Article  PubMed  Google Scholar 

  49. Lamo-Espinosa JM, Flórez B, Villas C, Pons-Villanueva J, Bondia JM, Alfonso M, Aquerreta JD. Sesamoid position in healthy volunteers without deformity: a computed tomography study. J Foot Ankle Surg 2016;55:461–464.

    Google Scholar 

  50. Kim Y, Kim JS, Young KW, Naraghi R, Cho HK, Lee SY. A new measure of tibial sesamoid position in hallux valgus in relation to the coronal rotation of the first metatarsal in CT scans. Foot Ankle Int. 2015;36:944–52.

    Article  PubMed  Google Scholar 

  51. Saltzman CL, Brandser EA, Berbaum KS, DeGnore L, Holmes JR, Katcherian DA, Teasdall RD, Alexander IJ. Reliability of standard foot radiographic measurements. Foot Ankle Int. 1994;15:661–5.

    Article  CAS  PubMed  Google Scholar 

  52. Resch S, Ryd L, Stenström A, Johnsson K, Reynisson K. Measuring hallux valgus: a comparison of conventional radiography and clinical parameters with regard to measurement accuracy. Foot Ankle Int. 1995;16:267–70.

    Article  CAS  PubMed  Google Scholar 

  53. Sanhudo JV, Gomes JE, Rabello MC, Delucca G. Interobeserver and Intraobserver reproducibility of hallux valgus angular measurements and the study of a linear measurement. Foot Ankle Spec. 2012;5:374–7.

    Article  PubMed  Google Scholar 

  54. Piqué-Vidal C, Maled-García I, Arabi-Moreno J, Vila J. Radiographic angles in hallux valgus: differences between measurements made manually and with a computerized program. Foot Ankle Int. 2006;27:175–80.

    Article  PubMed  Google Scholar 

  55. Van Vo H, Safiedine AM, Short T, Merrill T. A comparison of 4 common methods of hand-measured techniques with a computerized technique to measure the first intermetatarsal angle. J Foot Ankle Surg. 2004;43:395–9.

    Article  PubMed  Google Scholar 

  56. Srivastava S, Chockalingam N, El Fakhri T. Radiographic angles in hallux valgus: comparison between manual and computer-assisted measurements. J Foot Ankle Surg. 2010;49:523–8.

    Article  PubMed  Google Scholar 

  57. Panchbhavi VK, Trevino SG. Evaluation of hallux valgus surgery using computer-assisted radiographic measurements and two direct forefoot parameters. Foot Ankle Surg. 2004;10:59–63.

    Article  Google Scholar 

  58. Ege T, Kose O, Koca K, Demiralp B, Basbozkurt M. Use of the iPhone for radiographic evaluation of hallux valgus. Skelet Radiol. 2013;42:269–73.

    Article  Google Scholar 

  59. Paley D. Principles of deformity correction. Berlin: Springer; 2002.

    Book  Google Scholar 

  60. Ortiz C, Wagner P, Vela O, Fischman D, Cavada G, Wagner E. “angle to be corrected” in preoperative evaluation for hallux valgus surgery: analysis of a new angular measurement. Foot Ankle Int. 2016;37:172–7.

    Article  PubMed  Google Scholar 

  61. Dayton P, Kauwe M, Feilmeier M. Is our current paradigm for evaluation and management of the bunion deformity flawed? A discussion of procedure philosophy relative to anatomy. J Foot Ankle Surg. 2015;54:102–11.

    Article  PubMed  Google Scholar 

  62. Tanaka Y, Takakura Y, Kumai T, Samoto N, Tamai S. Radiographic analysis of hallux valgus. A two-dimensional coordinate system. J Bone Joint Surg Am. 1995;77:205–13.

    Article  CAS  PubMed  Google Scholar 

  63. Coughlin MJ, Saltzman CL, Nunley JA 2nd. Angular measurements in the evaluation of hallux valgus deformities: a report of the ad hoc committee of the American Orthopaedic Foot & Ankle Society on angular measurements. Foot Ankle Int. 2002;23:68–74.

    Article  PubMed  Google Scholar 

  64. LaPorta GA, Nasser EM, Mulhern JL, Malay DS. The mechanical axis of the first ray: a radiographic assessment in hallux abducto valgus evaluation. J Foot Ankle Surg. 2016;55:28–34.

    Article  PubMed  Google Scholar 

  65. Smith RW, Reynolds JC, Stewart MJ. Hallux valgus assessment: report of research committee of American Orthopaedic Foot and Ankle Society. Foot Ankle. 1984;5:92–103.

    Article  CAS  PubMed  Google Scholar 

  66. Scranton PE Jr, Rutkowski R. Anatomic variations in the first ray: part I. Anatomic aspects related to bunion surgery. Clin Orthop Relat Res. 1980;151:244–55.

    Google Scholar 

  67. Mortier J-P, Bernard J-L, Maestro M. Axial rotation of the first metatarsal head in a normal population and hallux valgus patients. Orthop Traumatol Surg Res. 2012;98:677–83.

    Article  PubMed  Google Scholar 

  68. Eustace S, O’Byrne J, Stack J, Stephens MM. Radiographic features that enable assessment of first metatarsal rotation: the role of pronation in hallux valgus. Skelet Radiol. 1993;22:153–6.

    Article  CAS  Google Scholar 

  69. Okuda R, Kinoshita M, Yasuda T, Jotoku T, Kitano N, Shima H. The shape of the lateral edge of the first metatarsal as a risk factor for recurrence of hallux valgus. JBJS. 2007;89:2161–72.

    Google Scholar 

  70. Yamaguchi S, Sasho T, Endo J, Yamamoto Y, Akagi R, Sato Y, Takahashi K. Shape of the lateral edge of the first metatarsal head changes depending on the rotation and inclination of the first metatarsal: a study using digitally reconstructed radiographs. J Orthop Sci. 2015;20:868–74.

    Article  PubMed  Google Scholar 

  71. D’Amico JC, Schuster RO. Motion of the first ray: clarification through investigation. J Am Podiatry Assoc. 1979;69:17–23.

    Article  PubMed  Google Scholar 

  72. Collan L, Kankare JA, Mattila K. The biomechanics of the first metatarsal bone in hallux valgus: a preliminary study utilizing a weight bearing extremity CT. Foot Ankle Surg. 2013;19:155–61.

    Article  PubMed  Google Scholar 

  73. Geng X, Wang C, Ma X, Wang X, Huang J, Zhang C, Xu J, Yang J. Mobility of the first metatarsal-cuneiform joint in patients with and without hallux valgus: in vivo three-dimensional analysis using computerized tomography scan. J Orthop Surg Res. 2015;10:1–7.

    Article  Google Scholar 

  74. Katsui R, Samoto N, Taniguchi A, Akahane M, Isomoto S, Sugimoto K, Tanaka Y. Relationship between displacement and degenerative changes of the sesamoids in hallux valgus. Foot Ankle Int. 2016;37:1303–9.

    Article  PubMed  Google Scholar 

  75. Kimura T, Kubota M, Taguchi T, Suzuki N, Hattori A, Marumo K. Evaluation of first-ray mobility in patients with hallux valgus using weight-bearing CT and a 3-D analysis system: a comparison with normal feet. J Bone Joint Surg Am. 2017;99:247–55.

    Article  PubMed  Google Scholar 

  76. Deenik A, Verburg A, Louwerens J-W, de Waal Malefijt M, de Bie R. Evidence of treatment algorithms for hallux valgus. Hallux valgus. 2015;57.

    Google Scholar 

  77. Garbuz DS, Masri BA, Esdaile J, Duncan CP. Classification systems in orthopaedics. J Am Acad Orthop Surg. 2002;10:290.

    Article  PubMed  Google Scholar 

  78. Santrock RD, Smith B, Hatch DJ, Dayton PD. Anatomic triplane hallux abducto valgus classification: PVB working group recommendations. 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Hatch DPM, FACFAS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hatch, D.J. (2018). Radiographic Assessment. In: Dayton, P. (eds) Evidence-Based Bunion Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-60315-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60315-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60314-8

  • Online ISBN: 978-3-319-60315-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics