Skip to main content

Investigating Circadian Rhythmicity in Pain Sensitivity Using a Neural Circuit Model for Spinal Cord Processing of Pain

  • Conference paper
  • First Online:
Women in Mathematical Biology

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 8))

  • 742 Accesses

Abstract

Primary processing of painful stimulation occurs in the dorsal horn of the spinal cord. In this article, we introduce mathematical models of the neural circuitry in the dorsal horn responsible for processing nerve fiber inputs from noxious stimulation of peripheral tissues and generating the resultant pain signal. The differential equation models describe the average firing rates of excitatory and inhibitory interneuron populations, as well as the wide dynamic range (WDR) neurons whose output correlates with the pain signal. The temporal profile of inputs on the different afferent nerve fibers that signal noxious and innocuous stimulation and the excitability properties of the included neuronal populations are constrained by experimental results. We consider models for the spinal cord circuit in isolation and when top-down inputs from higher brain areas that modulate pain processing are included. We validate the models by replicating experimentally observed phenomena of A fiber inhibition of pain and wind-up. We then use the models to investigate mechanisms for the observed phase shift in circadian rhythmicity of pain that occurs with neuropathic pain conditions. Our results suggest that changes in neuropathic pain rhythmicity can occur through dysregulation of inhibition within the dorsal horn circuit.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-60304-9_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguiar, P., Sousa, M., Lima, D.: NMDA channels together with L-type calcium currents and calcium-activated nonspecific cationic currents are sufficient to generate windup in WDR neurons. J. Neurophysiol.104(2), 1155–1166 (2010)

    Article  Google Scholar 

  2. Arle, J.E., Carlson, K.W., Mei, L., Iftimia, N., Shils, J.L.: Mechanism of dorsal column stimulation to treat neuropathic but not nociceptive pain: analysis with a computational model. Neuromodulation Technol. Neural Interface17(7), 642–655 (2014)

    Article  Google Scholar 

  3. Basbaum, A.I., Bautista, D.M. Scherrer, G., Julius, D.: Cellular and molecular mechanisms of pain. Cell139(2), 267–284 (2009)

    Article  Google Scholar 

  4. Booth, V., Diniz Behn, C.G.: Physiologically-based modeling of sleep-wake regulatory networks. Math. Biosci.250, 54–68 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Britton, N.F., Chaplain, M.A., Skevington, S.M.: The role of N-methyl-D-aspartate (NMDA) receptors in wind-up: a mathematical model. IMA J. Math. Appl. Med. Biol.13(3), 193–205 (1996)

    Article  MATH  Google Scholar 

  6. Britton, N.F., Skevington, S.M.: A mathematical model of the gate control theory of pain. J. Theor. Biol.137(1), 91–105 (1989)

    Article  MathSciNet  Google Scholar 

  7. Foo, H., Mason, P.: Brainstem modulation of pain during sleep and waking. Sleep Med. Rev.7(2), 145–154 (2003)

    Article  Google Scholar 

  8. Gilron, I., Ghasemlou, N.: Chronobiology of chronic pain: focus on diurnal rhythmicity of neuropathic pain. Curr. Opin. Support. Palliat. Care8(4), 429–436 (2014)

    Article  Google Scholar 

  9. Hagenauer, M.H., Kile, J., Piltz, S., Toporikova, N., Ferguson, P., Booth, V.: The modulation of pain by circadian and sleep-dependent processes: a review of the experimental evidence. In: Proceedings from A Research Collaboration Workshop for Women in Mathematical Biology. Springer, Berlin (2016)

    Google Scholar 

  10. Hasbargen, T., Ahmed, M.M., Miranpuri, G., Li, L., Kahle, K.T., Resnick, D., Sun, D.: Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury. Ann. N. Y. Acad. Sci.1198, 168–172 (2010)

    Article  Google Scholar 

  11. Herrero, J.F., Laird, J.M., Lopez-Garcia, J.A.: Wind-up of spinal cord neurones and pain sensation: much ado about something? Prog. Neurobiol.61(2), 169–203 (2000)

    Article  Google Scholar 

  12. Hines, M.L., Carnevale, N.T.: NEURON: a tool for neuroscientists. Neuroscientist7(2), 123–135 (2001)

    Article  Google Scholar 

  13. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117(4), 500–544 (1952)

    Google Scholar 

  14. Huang, C.-T., Chiang, R.P.-Y., Chen, C.-L., Tsai, Y.-J.: Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. Sleep37(9), 1513–1523 (2014)

    Article  Google Scholar 

  15. Kusunore, N., Koyanagi, S., Hamamura, K., Matsunaga, N., Yoshida, M., Uchida, T., Tsuda, M., Inoue, K., Ohdo, S.: Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain. Mol. Pain6(83), 1–8 (2010)

    Google Scholar 

  16. Le Bars, D., Gozariu, M., Cadden, S.W.: Animal models of nociception. Pharm. Rev.53(4), 597–652 (2001)

    Google Scholar 

  17. Le Franc, Y., Le Masson, G.: Multiple firing patterns in deep dorsal horn neurons of the spinal cord: computational analysis of mechanisms and functional implications. J. Neurophysiol.104(4), 1978–1996 (2010)

    Article  Google Scholar 

  18. Melnick, I.V., Santos, S.F., Szokol, K., Szucs, P., Safronov, B.V.: Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat. J. Neurophysiol.91(2), 646–655 (2004)

    Article  Google Scholar 

  19. Melzack, R., Wall, P.D.: Pain mechanisms: a new theory. Science150(3699), 971–979 (1965)

    Article  Google Scholar 

  20. Mendell, L.M. Wall, D.P.: Responses of single dorsal cells to peripheral cutaneous unmyelinated fibers. Nature206, 97–99 (1965)

    Article  Google Scholar 

  21. Millan, M.J.: Descending control of pain. Prog. Neurobiol.66(6), 355–474 (2002)

    Article  Google Scholar 

  22. Moayedi, M., Davis, K.D.: Theories of pain: from specificity to gate control. J. Neurophysiol.109(1), 5–12 (2013)

    Article  Google Scholar 

  23. Pöllmann, L.: Duality of pain demonstrated by the circadian variation in tooth sensitivity. In: Erhard, H., Kabat, H.F. (eds.) Chronobiology 1982–1983, chap. 39, pp. 225–228. Karger, Basel (1984)

    Google Scholar 

  24. Purves, D., Augustine, G.J., Fitzpatrick, D., et al.: Neuroscience. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  25. Reeve, A.J., Walker, K., Urban, L., Fox, A.: Excitatory effects of galanin in the spinal cord of intact, anaesthetized rats. Neurosci. Lett.295(1–2), 25–28 (2000)

    Article  Google Scholar 

  26. Ruscheweyh, R., Sandkühler, J.: Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J. Physiol. (Lond.)541(Pt 1), 231–244 (2002)

    Google Scholar 

  27. Schouenborg, J.: Functional and topographical properties of field potentials evoked in rat dorsal horn by cutaneous C-fibre stimulation. J. Physiol. (Lond.)356, 169–192 (1984)

    Google Scholar 

  28. Schouenborg, J., Sjölund, B.H.: Activity evoked by A- and C-afferent fibers in rat dorsal horn neurons and its relation to a flexion reflex. J. Neurophysiol.50(5), 1108–1121 (1983)

    Google Scholar 

  29. Takada, T., Yamashita, A., Date, A., Yanase, M., Suhara, Y., Hamada, A., Sakai, H., Ikegami, D., Iseki, M., Inada, E., Narita, M.: Changes in the circadian rhythm of mRNA expression forμ-opioid receptors in the periaqueductal gray under a neuropathic pain-like state. Synapse67(5), 216–223 (2013)

    Article  Google Scholar 

  30. Vgontzas, A.N., Bixler, E.O. Lin, H.-M., Prolo, P., Trakada, G., Chrousos, G.P.: Il-6 and its circadian secretion in humans. Neuroimmunomodulation12(3), 131–140 (2005)

    Article  Google Scholar 

  31. Wan-Ru, D., Yi-Kuan, X.: Modulation of c-nociceptive activities by inputs from myelinated fibers. Adv. Exp. Med. Biol.904, 33–40 (2016)

    Article  Google Scholar 

  32. Wei, H., Hao, B., Huang, J.-L., Ma, A.-N., Li, X.-Y., Wang, Y.-X., Pertovaara, A.: Intrathecal administration of a gap junction decoupler, an inhibitor of Na+ K+ 2Cl cotransporter 1, or a GABAA receptor agonist attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Pharmacol. Biochem. Behav.97(2), 377–383 (2010)

    Article  Google Scholar 

  33. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J.12(1), 1–24 (1972)

    Article  Google Scholar 

  34. Woolf, C.J., Wall, P.D.: Chronic peripheral nerve section diminishes the primary afferent A-fibre mediated inhibition of rat dorsal horn neurones. Brain Res.242(1), 77–85 (1982)

    Article  Google Scholar 

  35. Zhang, J., Li, H., Teng, H., Zhang, T., Luo, Y., Zhao, M., Li, Y.Q., Sun, Z.S.: Regulation of peripheral clock to oscillation of substance P contributes to circadian inflammatory pain. Anesthesiology117(1), 149–160 (2012)

    Article  Google Scholar 

  36. Zhang, T.C., Janik, J.J. Grill, W.M.: Modeling effects of spinal cord stimulation on wide-dynamic range dorsal horn neurons: influence of stimulation frequency and GABAergic inhibition. J. Neurophysiol.112(3), 552–567 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted as a part of A Research Collaboration Workshop for Women in Mathematical Biology at the National Institute for Mathematical and Biological Synthesis, sponsored by the National Science Foundation through NSF Award DBI-1300426, with additional support from the University of Tennessee, Knoxville. This work was additionally partially supported by the following sources: NSF Award DMS-1412119 (VB) and the Pritzker Neuropsychiatric Disorders Research Consortium (MH). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Booth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this paper

Cite this paper

Crodelle, J.A., Piltz, S.H., Booth, V., Hagenauer, M.H. (2017). Investigating Circadian Rhythmicity in Pain Sensitivity Using a Neural Circuit Model for Spinal Cord Processing of Pain. In: Layton, A., Miller, L. (eds) Women in Mathematical Biology. Association for Women in Mathematics Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-60304-9_2

Download citation

Publish with us

Policies and ethics