Skip to main content

Applications in Population Dynamics

  • Chapter
  • First Online:
Modelling with the Master Equation
  • 1313 Accesses

Abstract

In this chapter, we deal in detail with the issue of population growth and intend to point out ideas and thoughts behind the construction of models in population biology. It will help to understand in a better way the theoretical considerations and the outcome of the discrete Master equation approach compared with classical considerations in population dynamics based on continuous population dynamics. The extinction process and life time of single populations are investigated.

In a further example, a Master equation City-hinterland model demonstrates how migratory phase transitions may be responsible for the tremendous growth of settlements during the last decades.

Predator-prey interaction is one of the fundamental processes of biology. A very simple but often used and discussed model for the description of predator-prey interaction is the so-called famous Volterra-Lotka model. We will consider a special case of the Volterra-Lotka model by allowing the prey species to migrate to a habitat where the predator species cannot follow. In this case the unstable cycles of the Volterra-Lotka model will be replaced by a stable limit cycle, but also a much more complicated pattern may be obtained.

The dynamics of a system of interacting populations close this chapter. In case of three interacting populations, a sequence of phase transitions may occur and drive the system from a stable state, via a limit cycle towards chaotic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S (1993) On the nonautonomous Volterra-Lotka equations. Proc Am Math Soc 117:199–204

    Article  MathSciNet  MATH  Google Scholar 

  • Arthur B (1983) Competing technologies and lock-in by historical events. IIASA Paper WP-83-90, Laxenburg

    Google Scholar 

  • Arthur B (1991) The economy and complexity. In: Stein DL (ed) Lectures in the sciences of complexity. Addison-Wesley, Redwood City

    Google Scholar 

  • De Angelis DL (1976) Application of stochastic models to a wildlife population. Math Biosci 31(3–4):227–236

    Article  MATH  Google Scholar 

  • Benettin G, Galgani L, Strelcyn J-M (1976) Kolmogorov entropy and numerical experiments. Phys Rev A 14:2338

    Article  Google Scholar 

  • Campbell D (1991) Introduction to nonlinear phenomena. In: Stein DL (ed) Lectures in the sciences of complexity. Addison-Wesley, Redwood City

    Google Scholar 

  • Dendrinos DS (1985) Urban evolution, studies in the mathematical ecology of cities. Oxford University Press, Oxford

    Google Scholar 

  • Dendrinos DS, Haag G (1984) Towards a stochastic theory of location: empirical evidence. Geogr Anal 16:287–300

    Article  Google Scholar 

  • Goel NS, Richter-Dyn N (1974) Stochastic models in biology. Academic, New York

    Google Scholar 

  • Grassberger P, Procaccia I (1983) Meassuring the strangeness of strange attractors. Physica D 9:189

    Article  MathSciNet  MATH  Google Scholar 

  • Haag G (1989) Dynamic decision theory: applications to urban and regional topics. Kluwer, Dordrecht

    Book  Google Scholar 

  • Haag G, Dendrinos DS (1983) Toward a stochastic theory of location: a nonlinear migration process. Geogr Anal 15:269–286

    Article  Google Scholar 

  • Haken H (1978) Synergetics. An introduction. Springer, Berlin

    Book  MATH  Google Scholar 

  • Haken H (1983) Advanced synergetics. Springer, Berlin

    MATH  Google Scholar 

  • Haken H (2004) Synergetics: introduction and advanced topics. Springer, Berlin

    Book  Google Scholar 

  • Hanson HC (1976) The giant Canada goose. University Press, Carbondale

    Google Scholar 

  • Hentschel HGE, Procaccia I (1983) The infinite number of generalized dimensions of fractals and strange attractors. Phys D 8:435–444

    Article  MathSciNet  MATH  Google Scholar 

  • Hurwitz A (1895) Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. Math Ann 46:273–284

    Article  MathSciNet  MATH  Google Scholar 

  • Kaplan JL, Yorke JA (1979) Chaotic behavior of multidimensional difference equations. In: Peitgen H-O, Walter H-O (eds) Functional differential equations and approximations of fixed points. Lecture notes in mathematics, vol 730. Springer, Berlin

    Google Scholar 

  • Lorenz EN (1979) On the prevalence of aperiodicity in simple systems. In: Grmela M, Marsden JE (eds) Global analysis. Springer, New York

    Google Scholar 

  • Lotka AJ (1920) Analytical note on certain rhythmic relations in organic systems. Proc Natl Acad Sci USA 6:410

    Article  Google Scholar 

  • Ludwig D (1974) Stochastic population theories, Lecture notes in biomath, vol 3. Springer, Berlin

    Google Scholar 

  • Malthus TR (1798) An essay on the principle of population. Oxford World’s Classics, reprint

    Google Scholar 

  • Matsuo K, Lindenberg K, Shuler KE (1978) Stochastic theory of nonlinear rate processes with multiple stationary states. Relaxation time from a metastable state. J Stat Phys 19:65–75

    Article  MathSciNet  Google Scholar 

  • May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Mosekilde E, Rasmussen S, Joergensen H, Jaller F, Jensen C (1985) Chaotic behaviour in a simple model of urban migration. Preprint. Technical University of Denmark

    Google Scholar 

  • Papageorgiou YY (1980) On sudden urban growth. Environ Plan A 12:1035–1050

    Article  Google Scholar 

  • Pearl R, Reed L (1920) On the rate of growth of the population of the United States. Proc Natl Acad Sci 6:275

    Article  Google Scholar 

  • Ruelle D, Takens F (1971) On the nature of turbulence. Commun Math Phys 20:167–192

    Article  MathSciNet  MATH  Google Scholar 

  • van Kampen NG (1977) Stochastic processes in physics and chemistry. J Stat Phys 17:71

    Article  Google Scholar 

  • van Kampen NG (1978) An introduction to stochastic processes for physicists. In: Garido L, Seglar P, Shepherd PJ (eds) Stochastic processes in nonequilibrium systems. Proceedings, Sitges 1978. Springer, New York

    Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Corresp Math Phys 10:113–121

    Google Scholar 

  • Volterra V (1927) Variations and fluctuations of the numbers of individuals in coexisting animal populations. Mem. R. Comitato talassogr. Ital., mem. 131, reprint in Opere Math. 5, Rome

    Google Scholar 

  • Weidlich W, Haag G (1983) Concepts and models of a quantitative sociology: the dynamics of interacting populations, Springer series of synergetics, vol 14. Springer, New York

    MATH  Google Scholar 

  • Wheaton WC (1974) A comparative static analysis of urban spatial structure. J Econ Theory 9:223–237

    Article  Google Scholar 

  • Wilson EO, Bossert WH (1973) Einführung in die Populationsbiologie. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Haag, G. (2017). Applications in Population Dynamics. In: Modelling with the Master Equation. Springer, Cham. https://doi.org/10.1007/978-3-319-60300-1_7

Download citation

Publish with us

Policies and ethics