Skip to main content

Maternal Undernutrition and Long-Term Effects on Hepatic Function

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Part of the book series: Nutrition and Health ((NH))

Abstract

Undernutrition in utero, regardless of the source, can impair proper liver development leading to long-term metabolic dysfunction. Understanding the molecular mechanisms underlying how nutritional deficits during perinatal life lead to permanent alterations in hepatic gene expression will provide better therapeutic strategies to alleviate the undernourished liver in postnatal life. This chapter addresses the different experimental models of undernutrition in utero and highlights the direct and indirect mechanisms involved leading to metabolic diseases in the liver. These include hypoxia, oxidative stress, epigenetic alterations, and endoplasmic reticulum (ER) stress. In addition, promising perinatal nutritional and pharmaceutical interventions are highlighted which illustrate how the placidity of the developing liver can be exploited to prevent the onset of long-term metabolic disease.

Supported by: CIHR Operating Grant and Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

11β-HSD1:

11β-hydroxysteroid dehydrogenase type 1

ADP:

Adenine diphosphate

Akt1:

Protein kinase B

CpG:

Cysteine-phosphate-guanine

CVD:

Cardiovascular disease

Cyp2c11:

Cytochrome P450 2c11

Cyp3a1:

Cytochrome P450 3a1

Cyp7a1:

Cytochrome P450 7a1

EPO:

Erythropoietin

ER stress:

Endoplasmic reticulum stress

Ex-4:

Exendin-4

G6Pase:

Glucose-6 phosphatase

GLP-1:

Glucagon-like peptide-1

GR:

Glucocorticoid receptor

HDL:

High-density lipoproteins

IGF-1:

Insulin growth factor 1

IUGR:

Intrauterine growth restriction

JMJD:

Jmj domain-containing histone demethylation protein

LDL:

Low-density lipoproteins

LP:

Low protein

LXR:

Liver X receptor

miRs:

MicroRNAs

MMP2:

Matrix metalloproteinase 2

MNR:

Maternal nutrition restriction

MPR:

Maternal protein restriction

pAkt1 (Ser473):

Phospho Akt1 (serine 473)

Pck1:

Phosphoenolpyruvate carboxykinase 1 (soluble)

pEIF2α:

Phospho-eukaryotic translation initiation factor 2

PND:

Postnatal day

PPAR:

Peroxisome proliferator-activated receptor

SGA:

Small for gestational age

SMAD4:

SMAD family member 4

TGFB1:

Transforming growth factor β1

TUDCA:

Tauroursodeoxycholic acid

UPR:

Unfolded protein response

VEGF:

Vascular endothelial growth factor

References

  1. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    Article  CAS  PubMed  Google Scholar 

  2. Mathieu P, Pibarot P, Despres JP. Metabolic syndrome: the danger signal in atherosclerosis. Vasc Health Risk Manag. 2006;2(3):285–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Writing Group Members, Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, et al. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215.

    Article  Google Scholar 

  4. Lamarche B, Lemieux S, Dagenais GR, Despres JP. Visceral obesity and the risk of ischaemic heart disease: insights from the Quebec Cardiovascular Study. Growth Hormon IGF Res Off J Growth Horm Res Soc Int Res Soc. 1998;8(Suppl B(Journal Article)):1–8.

    Google Scholar 

  5. Schocken DD, Benjamin EJ, Fonarow GC, Krumholz HM, Levy D, Mensah GA, et al. Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation. 2008;117(19):2544–65.

    Article  PubMed  Google Scholar 

  6. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Executive summary: heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation. 2010;121(7):948–54.

    Article  PubMed  Google Scholar 

  7. Mehal WZ, Iredale J, Friedman SL. Scraping fibrosis: expressway to the core of fibrosis. Nat Med. 2011;17(5):552–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henderson NC, Iredale JP. Liver fibrosis: cellular mechanisms of progression and resolution. Clin Sci Lond Engl 1979. 2007;112(5):265–80.

    CAS  Google Scholar 

  9. McCullough AJ. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clin Liver Dis. 2004;8(3):521–33. viii.

    Article  PubMed  Google Scholar 

  10. Ekstedt M, Franzén LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatol Baltim Md. 2006;44(4):865–73.

    Article  CAS  Google Scholar 

  11. Bhaskar ME. Management of cirrhosis and ascites. N Engl J Med. 2004;351(3):300–1. author reply 300–1.

    Article  PubMed  Google Scholar 

  12. Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatol Baltim Md. 2010;52(3):934–44.

    Article  CAS  Google Scholar 

  13. Ishimoto T, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Orlicky DJ, Cicerchi C, et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatol Baltim Md. 2013;58(5):1632–43.

    Article  CAS  Google Scholar 

  14. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA J Am Med Assoc. 2007;298(3):299–308.

    Article  CAS  Google Scholar 

  15. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA J Am Med Assoc. 2007;298(3):309–16.

    Article  CAS  Google Scholar 

  16. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ. 2003;326(7404):1423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990;301(6761):1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barker DJ, Martyn CN, Osmond C, Hales CN, Fall CH. Growth in utero and serum cholesterol concentrations in adult life. BMJ. 1993;307(6918):1524–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valsamakis G, Kanaka-Gantenbein C, Malamitsi-Puchner A, Mastorakos G. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Ann N Y Acad Sci. 2006;1092:138–47.

    Article  CAS  PubMed  Google Scholar 

  20. Neerhof MG. Causes of intrauterine growth restriction. Clin Perinatol. 1995;22(2):375–85.

    CAS  PubMed  Google Scholar 

  21. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295(7):349–53.

    Article  CAS  PubMed  Google Scholar 

  22. Desai M, Hales CN. Role of fetal and infant growth in programming metabolism in later life. Biol Rev Camb Philos Soc. 1997;72(2):329–48.

    Article  CAS  PubMed  Google Scholar 

  23. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303(6809):1019–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett PH. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ. 1994;308(6934):942–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Finken MJ, Inderson A, Van Montfoort N, Keijzer-Veen MG, van Weert AW, Carfil N, et al. Lipid profile and carotid intima-media thickness in a prospective cohort of very preterm subjects at age 19 years: effects of early growth and current body composition. Pediatr Res. 2006;59(4 Pt 1):604–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351(9097):173–7.

    Article  CAS  PubMed  Google Scholar 

  27. Forsdahl A. Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974-75. J Epidemiol Community Health. 1978;32(1):34–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yudkin JS, Stanner S. Prenatal exposure to famine and health in later life. Lancet. 1998;351(9112):1361–2.

    Article  CAS  PubMed  Google Scholar 

  29. Yajnik C. Interactions of perturbations in intrauterine growth and growth during childhood on the risk of adult-onset disease. Proc Nutr Soc. 2000;59(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  30. Eriksson JG. Early growth, and coronary heart disease and type 2 diabetes: experiences from the Helsinki Birth Cohort studies. Int J Obes 2005. 2006;30(Suppl 4(Journal Article)):S18–22.

    Google Scholar 

  31. Martin RM, McCarthy A, Smith GD, Davies DP, Ben-Shlomo Y. Infant nutrition and blood pressure in early adulthood: the Barry Caerphilly growth study. Am J Clin Nutr. 2003;77(6):1489–97.

    CAS  PubMed  Google Scholar 

  32. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601.

    Article  CAS  PubMed  Google Scholar 

  33. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60(Journal Article):5–20.

    Article  CAS  PubMed  Google Scholar 

  34. Sohi G, Marchand K, Revesz A, Arany E, Hardy DB. Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol Endocrinol Baltim Md. 2011;25(5):785–98.

    Article  CAS  Google Scholar 

  35. Peterside IE, Selak MA, Simmons RA. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol Endocrinol Metab. 2003;285(6):E1258–66.

    Article  CAS  PubMed  Google Scholar 

  36. Nevin CMY, Matushewski B, Regnault TRH, Richardson BS. Maternal nutrient restriction (MNR) in guinea pigs leads to fetal growth restricted (FGR) offspring with differential rates of organ catch-up growth. Reprod Sci. 2016; 23:149A.

    Google Scholar 

  37. Deiber M, Chatelain P, Naville D, Putet G, Salle B. Functional hypersomatotropism in small for gestational age (SGA) newborn infants. J Clin Endocrinol Metab. 1989;68(1):232–4.

    Article  CAS  PubMed  Google Scholar 

  38. Singhal A, Cole TJ, Fewtrell M, Lucas A. Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow-up of a prospective randomised study. Lancet. 2004;363(9421):1571–8.

    Article  CAS  PubMed  Google Scholar 

  39. Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab. 2000;85(4):1401–6.

    CAS  PubMed  Google Scholar 

  40. Ross MG, Beall MH. Prediction of preterm birth: nonsonographic cervical methods. Semin Perinatol. 2009;33(5):312–6.

    Article  PubMed  Google Scholar 

  41. Murotsuki J, Challis JR, Han VK, Fraher LJ, Gagnon R. Chronic fetal placental embolization and hypoxemia cause hypertension and myocardial hypertrophy in fetal sheep. Am J Phys. 1997;272(1 Pt 2):R201–7.

    CAS  Google Scholar 

  42. Ogata ES, Bussey ME, Finley S. Altered gas exchange, limited glucose and branched chain amino acids, and hypoinsulinism retard fetal growth in the rat. Metabolism. 1986;35(10):970–7.

    Article  CAS  PubMed  Google Scholar 

  43. Simmons RA, Gounis AS, Bangalore SA, Ogata ES. Intrauterine growth retardation: fetal glucose transport is diminished in lung but spared in brain. Pediatr Res. 1992;31(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  44. Sarr O, Blake A, Thompson JA, Zhao L, Rabicki K, Walsh JC, et al. The differential effects of low birth weight and western diet consumption upon early life hepatic fibrosis development in guinea pig. J Physiol. 2015;594(6):1753–72.

    Google Scholar 

  45. Lane RH, Kelley DE, Gruetzmacher EM, Devaskar SU. Uteroplacental insufficiency alters hepatic fatty acid-metabolizing enzymes in juvenile and adult rats. Am J Phys Regul Integr Comp Phys. 2001;280(1):R183–90.

    CAS  Google Scholar 

  46. Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes. 2001;50(10):2279–86.

    Article  CAS  PubMed  Google Scholar 

  47. Raab EL, Vuguin PM, Stoffers DA, Simmons RA. Neonatal exendin-4 treatment reduces oxidative stress and prevents hepatic insulin resistance in intrauterine growth-retarded rats. Am J Phys Regul Integr Comp Phys. 2009;297(6):R1785–94.

    CAS  Google Scholar 

  48. Goodspeed D, Seferovic MD, Holland W, Mcknight RA, Summers SA, Branch DW, et al. Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats. FASEB J Off Publ Fed Am Soc Exp Biol. 2015;29(3):807–19.

    Google Scholar 

  49. Baserga M, Hale MA, McKnight RA, Yu X, Callaway CW, Lane RH. Uteroplacental insufficiency alters hepatic expression, phosphorylation, and activity of the glucocorticoid receptor in fetal IUGR rats. Am J Phys Regul Integr Comp Phys. 2005;289(5):R1348–53.

    CAS  Google Scholar 

  50. Lane RH, Crawford SE, Flozak AS, Simmons RA. Localization and quantification of glucose transporters in liver of growth-retarded fetal and neonatal rats. Am J Phys. 1999;276(1 Pt 1):E135–42.

    CAS  Google Scholar 

  51. Lane RH, MacLennan NK, Hsu JL, Janke SM, Pham TD. Increased hepatic peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance. Endocrinology. 2002;143(7):2486–90.

    Article  CAS  PubMed  Google Scholar 

  52. Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA. Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J Off Publ Fed Am Soc Exp Biol. 2009;23(8):2438–49.

    CAS  Google Scholar 

  53. Zinkhan EK, Chin JR, Zalla JM, Yu B, Numpang B, Yu X, et al. Combination of intrauterine growth restriction and a high-fat diet impairs cholesterol elimination in rats. Pediatr Res. 2014;76(5):432–40.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang J, Lewis RM, Wang C, Hales N, Byrne CD. Maternal dietary iron restriction modulates hepatic lipid metabolism in the fetuses. Am J Physiol Integr Comp Physiol. 2005;288(1):R104–11.

    Article  CAS  Google Scholar 

  55. Elias AA, Ghaly A, Matushewski B, Regnault TRH, Richardson BS. Maternal nutrient restriction in guinea pigs as an animal model for inducing fetal growth restriction. Reprod Sci. 2016;23(2):219–27.

    Google Scholar 

  56. Lumey LH. Compensatory placental growth after restricted maternal nutrition in early pregnancy. Placenta. 1998;19(1):105–11.

    Article  CAS  PubMed  Google Scholar 

  57. Sohlström A, Katsman A, Kind KL, Roberts CT, Owens PC, Robinson JS, et al. Food restriction alters pregnancy-associated changes in IGF and IGFBP in the guinea pig. Am J Phys. 1998;274(3 Pt 1):E410–6.

    Google Scholar 

  58. Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG, et al. Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol. 2010;299(5):G1023–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nijland MJ, Mitsuya K, Li C, Ford S, McDonald TJ, Nathanielsz PW, et al. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability. J Physiol. 2010;588(Pt 8):1349–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. George LA, Zhang L, Tuersunjiang N, Ma Y, Long NM, Uthlaut AB, et al. Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring. Am J Phys Regul Integr Comp Phys. 2012;302(7):R795–804.

    CAS  Google Scholar 

  61. Petry CJ, Ozanne SE, Hales CN. Programming of intermediary metabolism. Mol Cell Endocrinol. 2001;185(1–2):81–91.

    Article  CAS  PubMed  Google Scholar 

  62. Crosby WM. Studies in fetal malnutrition. Am J Dis Child 1960. 1991;145(8):871–6.

    CAS  Google Scholar 

  63. Sohi G, Revesz A, Ramkumar J, Hardy DB. Higher hepatic miR-29 expression in undernourished male rats during the postnatal period targets the long-term repression of IGF-1. Endocrinology. 2015;156(9):3069–76.

    Article  CAS  PubMed  Google Scholar 

  64. Sohi G, Revesz A, Hardy DB. Nutritional mismatch in postnatal life of low birth weight rat offspring leads to increased phosphorylation of hepatic eukaryotic initiation factor 2 α in adulthood. Metabolism. 2013;62(10):1367–74.

    Article  CAS  PubMed  Google Scholar 

  65. Guan H, Arany E, van Beek JP, Chamson-Reig A, Thyssen S, Hill DJ, et al. Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol Metab. 2005;288(4):E663–73.

    CAS  Google Scholar 

  66. Petrik J, Reusens B, Arany E, Remacle C, Coelho C, Hoet JJ, et al. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology. 1999;140(10):4861–73.

    Article  CAS  PubMed  Google Scholar 

  67. Vo T, Revesz A, Ma N, Hardy DB. Maternal protein restriction leads to enhanced hepatic gluconeogenic gene expression in adult male rat offspring due to impaired expression of the liver x receptor. J Endocrinol. 2013;218(Journal Article):85–97.

    Article  CAS  PubMed  Google Scholar 

  68. Chamson-Reig A, Thyssen SM, Hill DJ, Arany E. Exposure of the pregnant rat to low protein diet causes impaired glucose homeostasis in the young adult offspring by different mechanisms in males and females. Exp Biol Med Maywood NJ. 2009;234(12):1425–36.

    Article  CAS  Google Scholar 

  69. Petry CJ, Ozanne SE, Wang CL, Hales CN. Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin Sci Lond Engl 1979. 1997;93(2):147–52.

    CAS  Google Scholar 

  70. Burns SP, Desai M, Cohen RD, Hales CN, Iles RA, Germain JP, et al. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest. 1997;100(7):1768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ozanne SE, Smith GD, Tikerpae J, Hales CN. Altered regulation of hepatic glucose output in the male offspring of protein-malnourished rat dams. Am J Phys. 1996;270(4 Pt 1):E559–64.

    CAS  Google Scholar 

  72. Sohi G, Barry EJ, Velenosi TJ, Urquhart BL, Hardy DB. Protein restoration in low-birth-weight rat offspring derived from maternal low-protein diet leads to elevated hepatic CYP3A and CYP2C11 activity in adulthood. Drug Metab Dispos Biol Fate Chem. 2014;42(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  73. Elias AA, Maki B, Matushewski B, Nygard K, Regnault TRH, Richardson BS. Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with evidence for chronic hypoxia. Pediatric Res. 2017; in press; doi:10.1038/pr.2017.92.

  74. Fu Q, McKnight RA, Callaway CW, Yu X, Lane RH, Majnik AV. Intrauterine growth restriction disrupts developmental epigenetics around distal growth hormone response elements on the rat hepatic IGF-1 gene. FASEB J Off Publ Fed Am Soc Exp Biol. 2015;29(4):1176–84.

    CAS  Google Scholar 

  75. Nolan K, Walter F, Tuffy LP, Poeschel S, Gallager R, Haunsberger S, Bray I, Stallings RL, Concannon CG, Prehn HM. Endoplasmic reticulum stress-mediated upregulation of miR-29a enhances sensitivity to neuronal apoptosis. Eur J Neurosci. 2016;43:640–52.

    Google Scholar 

  76. Barra NG, VanDuzer T, Holloway AC, Hardy DB. Maternal nicotine exposure (MNE) leads to decreased visceral adipocyte size associated with endoplasmic reticulum (ER) stress in 26 week old rat offspring. Reprod Sci. 2016; 23:314A.

    Google Scholar 

  77. Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 1996;10(13):1670–82.

    Article  CAS  PubMed  Google Scholar 

  78. Cascio S, Zaret KS. Hepatocyte differentiation initiates during endodermal-mesenchymal interactions prior to liver formation. Dev Camb Engl. 1991;113(1):217–25.

    CAS  Google Scholar 

  79. Greengard O, Federman M, Knox WE. Cytomorphometry of developing rat liver and its application to enzymic differentiation. J Cell Biol. 1972;52(2):261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kung JWC, Currie IS, Forbes SJ, Ross JA. Liver development, regeneration, and carcinogenesis. J Biomed Biotechnol. 2010;2010:984248.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ornoy A, Tsadok MA, Yaffe P, Zangen SW. The Cohen diabetic rat as a model for fetal growth restriction: vitamins C and E reduce fetal oxidative stress but do not restore normal growth. Reprod Toxicol Elmsford N. 2009;28(4):521–9.

    Article  CAS  Google Scholar 

  82. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135(6):1382–6.

    Google Scholar 

  83. Lillycrop KA, Rodford J, Garratt ES, Slater-Jefferies JL, Godfrey KM, Gluckman PD, et al. Maternal protein restriction with or without folic acid supplementation during pregnancy alters the hepatic transcriptome in adult male rats. Br J Nutr. 2010;103(12):1711–9.

    Google Scholar 

  84. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One. 2009;4(11):e7845.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes. 2010;59(8):1899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pinney SE, Jaeckle Santos LJ, Han Y, Stoffers DA, Simmons RA. Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia. 2011;54(10):2606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lemley CO, Meyer AM, Camacho LE, Neville TL, Newman DJ, Caton JS, et al. Melatonin supplementation alters uteroplacental hemodynamics and fetal development in an ovine model of intrauterine growth restriction. Am J Physiol Integr Comp Physiol. 2012;302(4):R454–67.

    Article  CAS  Google Scholar 

  88. Garg M, Thamotharan M, Pan G, Lee PW, Devaskar SU. Early exposure of the pregestational intrauterine and postnatal growth-restricted female offspring to a peroxisome proliferator-activated receptor-{gamma} agonist. Am J Physiol Metab. 2010;298(3):E489–98.

    CAS  Google Scholar 

  89. Sohi G, Revesz A, Arany E, Hardy DB. The liver X receptor mediates the impaired cholesterol metabolism exhibited in the offspring of maternal protein restricted rats. Reprod Sci. 2011;18(4):F163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Hardy PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hardy, D.B. (2017). Maternal Undernutrition and Long-Term Effects on Hepatic Function. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics