Skip to main content

Maternal Undernutrition and Visceral Adiposity

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Part of the book series: Nutrition and Health ((NH))

Abstract

The global epidemic of obesity and associated metabolic disorders continue to develop, affecting quality of life in developed as well as developing countries. Traditionally, intake of unhealthy diets and lack of physical activity in postnatal life were considered to be the major risk factors for development of visceral obesity and metabolic diseases. Recent studies have pointed out that malnutrition also prior to birth plays a vital role in the predisposition for visceral obesity and metabolic disorders. In this review, we highlight how maternal undernutrition during critical periods of foetal development affects traits associated with development of visceral obesity later in life. Prenatal undernutrition particularly during the later stages of gestation can induce differential signals in adipose tissue in such a way that lipid storing capacity and hence expandability of subcutaneous fat are compromised leading to marked overexpansion (adipocyte hypertrophy) of visceral adipose tissues, in sheep particularly in perirenal fat. Such changes in adiposity can result in elevated inflammatory responses and associated metabolic disturbances. Foetal undernutrition is associated with epigenetic changes resulting in altered expression of key genes, which potentially can be involved in this development of visceral obesity, but the detailed mechanisms are not yet well known. Proper nutrition during critical periods of foetal development is thus important to counteract the increased trend of visceral obesity and associated disorders in humans, and a healthy diet postnatally appears particular important for individuals exposed to undernutrition prenatally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATM:

Adipose tissue macrophages

BMI:

Body mass index

CD-68:

Cluster of differentiation-68

HIF:

Hypoxia inducible factor

IL-6:

Interleukin-6

PPARγ:

Peroxisome proliferator-activated receptor γ

SGA:

Small for gestational age

SREBP-1:

Sterol regulatory binding protein-1

TLR-4:

Toll-like receptor-4

TNF-α:

Tumour necrosis factor-α

VEGF:

Vascular endothelial growth factor

References

  1. Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635–43.

    CAS  PubMed  Google Scholar 

  2. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32:1431–7.

    Article  CAS  Google Scholar 

  3. Prentice AM. The emerging epidemic of obesity in developing countries. Int J Epidemiol. 2006;35:93–9.

    Article  PubMed  Google Scholar 

  4. WHO, Obesity: preventing and managing the global epidemic. Working group on obesity. Geneva: World Health Organization; 1998.

    Google Scholar 

  5. Putnam J, Allshouse J, Kantor LS. U.S. per capita food supply trends: more calories, refined carbohydrates, and fats. Food Rev. 2002;25:1–15.

    Google Scholar 

  6. Sturm R. The economics of physical activity: societal trends and rationales for interventions. Am J Prev Med. 2004;27:126–35.

    Article  PubMed  Google Scholar 

  7. Björntorp P. Metabolic implications of body fat distribution. Diabetes Care. 1991;14:1132–43.

    Article  PubMed  Google Scholar 

  8. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

    Article  CAS  PubMed  Google Scholar 

  9. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp Physiol. 2007;92:287–98.

    Article  CAS  PubMed  Google Scholar 

  11. Dyer JS, Rosenfeld CR. Metabolic imprinting by prenatal, perinatal, and postnatal overnutrition: a review. Semin Reprod Med. 2011;29:266–76.

    Article  CAS  PubMed  Google Scholar 

  12. Lucas A. Programming by early nutrition in man. Ciba Found Symp. 1991;156:38–50.

    CAS  PubMed  Google Scholar 

  13. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000;71:1344S–52S.

    CAS  PubMed  Google Scholar 

  14. Symonds ME, Sebert SP, Hyatt MA, Budge H. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol. 2009;5:604–10.

    Article  CAS  PubMed  Google Scholar 

  15. Fall CHD. Evidence for the intra-uterine programming of adiposity in later life. Ann Hum Biol. 2011;38:410–28.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hediger ML, Overpeck MD, Kuczmarski RJ, McGlynn A, Maurer KR, Davis WW. Muscularity and fatness of infants and young children born small- or large-for-gestational-age. Pediatrics. 1998;102:E60.

    Article  CAS  PubMed  Google Scholar 

  17. Barker M, Robinson S, Osmond C, Barker DJ. Birth weight and body fat distribution in adolescent girls. Arch Dis Child. 1997;77:381–3.

    Article  CAS  PubMed  Google Scholar 

  18. Walker SP, Gaskin PS, Powell CA, Bennett FI. The effects of birth weight and postnatal linear growth retardation on body mass index, fatness and fat distribution in mid and late childhood. Public Health Nutr. 2002;5:391–6.

    Article  PubMed  Google Scholar 

  19. Khanal P, Husted SV, Axel AM, Johnsen L, Pedersen KL, Mortensen MS, Kongsted AH, Nielsen MO. Late gestation over- and undernutrition predispose for visceral adiposity in response to a post-natal obesogenic diet, but with differential impacts on glucose–insulin adaptations during fasting in lambs. Acta Physiol. 2014;210:110–26.

    Article  CAS  Google Scholar 

  20. Nielsen MO, Kongsted AH, Thygesen MP, Strathe AB, Caddy S, Quistorff B, Jørgensen W, Christensen VG, Husted S, Chwalibog A, Sejrsen K, Purup S, Svalastoga E, McEvoy FJ, Johnsen L. Late gestation undernutrition can predispose for visceral adiposity by altering fat distribution patterns and increasing the preference for a high-fat diet in early postnatal life. Br J Nutr. 2013;109:2098–110.

    Article  CAS  PubMed  Google Scholar 

  21. Ford SP, Hess BW, Schwope MM, Nijland MJ, Gilbert JS, Vonnahme KA, Means WJ, Han H, Nathanielsz PW. Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring. J Anim Sci. 2007;85:1285–94.

    Article  CAS  PubMed  Google Scholar 

  22. Barbero A, Astiz S, Lopez-Bote CJ, Perez-Solana ML, Ayuso M, Garcia-Real I, Gonzalez-Bulnes A. Maternal malnutrition and offspring sex determine juvenile obesity and metabolic disorders in a swine model of leptin resistance. PLoS One. 2013;8:e78424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rolfe Ede L, Loos RJ, Druet C, Stolk RP, Ekelund U, Griffin SJ, Forouhi NG, Wareham NJ, Ong KK. Association between birth weight and visceral fat in adults. Am J Clin Nutr. 2010;92:347–52.

    Article  PubMed  Google Scholar 

  24. Law CM, Barker DJ, Osmond C, Fall CH, Simmonds SJ. Early growth and abdominal fatness in adult life. J Epidemiol Community Health. 1992;46:184–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lumey LH, Ravelli AC, Wiessing LG, Koppe JG, Treffers PE, Stein ZA. The Dutch famine birth cohort study: design, validation of exposure, and selected characteristics of subjects after 43 years follow-up. Paediatr Perinat Epidemiol. 1993;7:354–67.

    Article  CAS  PubMed  Google Scholar 

  26. Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70:811–6.

    CAS  PubMed  Google Scholar 

  27. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351:173–7.

    Article  CAS  PubMed  Google Scholar 

  28. Tian JY, Cheng Q, Song XM, Li G, Jiang GX, Gu YY, Luo M. Birth weight and risk of type 2 diabetes, abdominal obesity and hypertension among Chinese adults. Eur J Endocrinol. 2006;155:601–7.

    Article  CAS  PubMed  Google Scholar 

  29. de Oliveira JC, Gomes RM, Miranda RA, Barella LF, Malta A, Martins IP, Franco CC, Pavanello A, Torrezan R, Natali MR, Lisboa PC, Mathias PC, de Moura EG. Protein restriction during the last third of pregnancy malprograms the neuroendocrine axes to induce metabolic syndrome in adult male rat offspring. Endocrinology. 2016;157:1799–812.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bellinger L, Sculley DV, Langley-Evans SC. Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int J Obes. 2006;30:729–38.

    Article  CAS  Google Scholar 

  31. Guan H, Arany E, van Beek JP, Chamson-Reig A, Thyssen S, Hill DJ, Yang K. Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol Endocrinol Metab. 2005;288:E663–73.

    Article  CAS  PubMed  Google Scholar 

  32. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D’Agostino RB Sr, O’Donnell CJ. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.

    Article  PubMed  Google Scholar 

  33. Jones RH, Ozanne SE. Fetal programming of glucose-insulin metabolism. Mol Cell Endocrinol. 2009;297:4–9.

    Article  CAS  PubMed  Google Scholar 

  34. Cohen MP, Stern E, Rusecki Y, Zeidler A. High prevalence of diabetes in young adult Ethiopian immigrants to Israel. Diabetes. 1988;37:824–8.

    Article  CAS  PubMed  Google Scholar 

  35. Gosby AK, Maloney CA, Caterson ID. Elevated insulin sensitivity in low-protein offspring rats is prevented by a high-fat diet and is associated with visceral fat. Obesity. 2010;18:1593–600.

    Article  CAS  PubMed  Google Scholar 

  36. van der Waaij EH, van den Brand H, van Arendonk JA, Kemp B. Effect of match or mismatch of maternal–offspring nutritional environment on the development of offspring in broiler chickens. Animal. 2011;5:741–8.

    Article  PubMed  Google Scholar 

  37. Nielsen MO, Hou L, Johnsen L, Khanal P, Bechshøft CL, Kongsted AH, Vaag A, Hellgren LI. Do very small adipocytes in subcutaneous adipose tissue (a proposed risk factor for insulin insensitivity) have a fetal origin? Clin Nutr Exp. 2016;8:9–24.

    Article  Google Scholar 

  38. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb. 2011;18:629–39.

    Article  CAS  PubMed  Google Scholar 

  39. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, Whelton PK, He J. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–74.

    Article  PubMed  Google Scholar 

  40. López-Jaramillo P1, Silva SY, Rodríguez-Salamanca N, Duràn A, Mosquera W, Castillo V. Are nutrition-induced epigenetic changes the link between socioeconomic pathology and cardiovascular diseases? Am J Ther. 2008;15:362–72.

    Article  PubMed  Google Scholar 

  41. Gluckman PD, Hanson MA, Spencer HG. Predictive adaptive responses and human evolution. Trends Ecol Evol. 2005;20:527–33.

    Article  PubMed  Google Scholar 

  42. Khanal P, Johnsen L, Axel AM, Hansen PW, Kongsted AH, Lyckegaard NB, Nielsen MO. Long-term impacts of foetal malnutrition followed by early postnatal obesity on fat distribution pattern and metabolic adaptability in adult sheep. PLoS One. 2016;11:e0156700.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Symonds ME, Stephenson T, Gardner DS, Budge H. Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev. 2006;19:53–63.

    Article  Google Scholar 

  44. Poissonnet CM, Burdi AR, Garn SM. The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev. 1984;10:1–11.

    Article  CAS  PubMed  Google Scholar 

  45. Symonds ME, Lomax MA. Maternal and environmental influences on thermoregulation in the neonate. Proc Nutr Soc. 1992;51:165–72.

    Article  CAS  PubMed  Google Scholar 

  46. Symonds ME, Stephenson T. Maternal nutrition and endocrine programming of fetal adipose tissue development. Biochem Soc Trans. 1999;27:97–104.

    Article  CAS  PubMed  Google Scholar 

  47. Alexander G. Quantitative development of adipose tissue in foetal sheep. Aust J Biol Sci. 1978;31:489–503.

    Article  CAS  PubMed  Google Scholar 

  48. Gemmell RT, Alexander G. Ultrastructural development of adipose tissue in foetal sheep. Aust J Biol Sci. 1978;31:505–15.

    Article  CAS  PubMed  Google Scholar 

  49. Weinreb JC, Lowe T, Cohen JM, Kutler M. Human fetal anatomy: MR imaging. Radiology. 1985;157:715–20.

    Article  CAS  PubMed  Google Scholar 

  50. Ailhaud G1, Grimaldi P, Négrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr. 1992;12:207–33.

    Article  CAS  PubMed  Google Scholar 

  51. Desai M, Ross MG. Fetal programming of adipose tissue: effects of intrauterine growth restriction and maternal obesity/high-fat diet. Semin Reprod Med. 2011;29:237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kiess W, Petzold S, Töpfer M, Garten A, Blüher S, Kapellen T, Körner A, Kratzsch J. Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab. 2008;22:135–53.

    Article  CAS  PubMed  Google Scholar 

  53. Yan X, Zhu MJ, Dodson MV, Du M. Developmental programming of fetal skeletal muscle and adipose tissue development. J Genomics. 2013;8:29–38.

    Article  Google Scholar 

  54. Avram MM, Avram AS, James WD. Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell. J Am Acad Dermatol. 2007;56:472–92.

    Article  PubMed  Google Scholar 

  55. Morrison RF, Farmer SR. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr. 2000;130:3116s–21s.

    CAS  PubMed  Google Scholar 

  56. Hausman GJ, Richardson RL. Adipose tissue angiogenesis. J Anim Sci. 2004;82:925–34.

    Article  CAS  PubMed  Google Scholar 

  57. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev. 2001;2:239–54.

    Article  CAS  PubMed  Google Scholar 

  58. Buechler C, Krautbauer S, Eisinger K. Adipose tissue fibrosis. World J Diabetes. 2015;6:548–53.

    PubMed  PubMed Central  Google Scholar 

  59. Sarr O, Thompson JA, Zhao L, Lee TY, Regnault TR. Low birth weight male guinea pig offspring display increased visceral adiposity in early adulthood. PLoS One. 2014;9:e98433.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Joss-Moore LA, Wang Y, Campbell MS, Moore B, Yu X, Callaway CW, McKnight RA, Desai M, Moyer-Mileur LJ, Lane RH. Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARγ2 expression in male rat offspring prior to the onset of obesity. Early Hum Dev. 2010;86:179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McLaughlin T, Deng A, Yee G, Lamendola C, Reaven G, Tsao PS, Cushman SW, Sherman A. Inflammation in subcutaneous adipose tissue: relationship to adipose cell size. Diabetologia. 2009;53:369–77.

    Article  PubMed  Google Scholar 

  62. McLaughlin T, Lamendola C, Coghlan N, Liu TC, Lerner K, Sherman A, Cushman SW. Subcutaneous adipose cell size and distribution: relationship to insulin resistance and body fat. Obesity. 2014;22(3):673–80.

    Article  CAS  PubMed  Google Scholar 

  63. Muhlhausler B, Smith SR. Early-life origins of metabolic dysfunction: role of the adipocyte. Trends Endocrinol Metab. 2009;20:51–7.

    Article  CAS  PubMed  Google Scholar 

  64. Gastaldelli A. Role of beta-cell dysfunction, ectopic fat accumulation and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011;93:S60–5.

    Article  CAS  PubMed  Google Scholar 

  65. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7:410–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lemieux I. Energy partitioning in gluteal-femoral fat: does the metabolic fate of triglycerides affect coronary heart disease risk? Arterioscler Thromb Vasc Biol. 2004;24:795–7.

    Article  CAS  PubMed  Google Scholar 

  67. Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: definition, pathophysiology, and mechanisms. Am Heart J. 2005;149:33–45.

    Article  CAS  PubMed  Google Scholar 

  68. Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T. Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc. 2004;63:397–403.

    Article  PubMed  Google Scholar 

  69. Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr. 2005;82:980–7.

    CAS  PubMed  Google Scholar 

  70. Harrington TA, Thomas EL, Frost G, Modi N, Bell JD. Distribution of adipose tissue in the newborn. Pediatr Res. 2004;55:437–41.

    Article  PubMed  Google Scholar 

  71. Nguyen LT, Muhlhausler BS, Botting KJ, Morrison JL. Maternal undernutrition alters fat cell size distribution, but not lipogenic gene expression, in the visceral fat of the late gestation guinea pig fetus. Placenta. 2010;31:902–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kind KL, Roberts CT, Sohlstrom AI, Katsman A, Clifton PM, Robinson JS, Owens JA. Chronic maternal feed restriction impairs growth but increases adiposity of the fetal guinea pig. Am J Physiol Regul Integr Comp Physiol. 2005;288:R119–26.

    Article  CAS  PubMed  Google Scholar 

  73. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.

    Article  CAS  PubMed  Google Scholar 

  74. Després JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis. 1990;10:497–511.

    Article  PubMed  Google Scholar 

  75. Item F, Konrad D. Visceral fat and metabolic inflammation: the portal theory revisited. Obes Rev. 2012;13:30–9.

    Article  PubMed  Google Scholar 

  76. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2:367–73.

    Article  PubMed  Google Scholar 

  77. Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008;29:2959–71.

    Article  CAS  PubMed  Google Scholar 

  78. Sharkey D, Symonds ME, Budge H. Adipose tissue inflammation: developmental ontogeny and consequences of gestational nutrient restriction in offspring. Endocrinology. 2009;150:3913–20.

    Article  CAS  PubMed  Google Scholar 

  79. Riddle ES, Campbell MS, Lang BY, Bierer R, Wang Y, Bagley HN, Joss-Moore LA. Intrauterine growth restriction increases TNF alpha and activates the unfolded protein response in male rat pups. J Obes. 2014;2014:829862.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Reynolds CM, Li M, Gray C, Vickers MH. Preweaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition. Endocrinology. 2013;154:2676–86.

    Article  CAS  PubMed  Google Scholar 

  81. Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance-a mini-review. Gerontology. 2009;55:379–86.

    Article  CAS  PubMed  Google Scholar 

  82. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lillycrop KA, Burdge GC. Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab. 2012;26:667–76.

    Article  PubMed  Google Scholar 

  84. Musri MM, Parrizas M. Epigenetic regulation of adipogenesis. Curr Opin Clin Nutr Metab Care. 2012;15:342–9.

    Article  CAS  PubMed  Google Scholar 

  85. Li HX, Xiao L, Wang C, Gao JL, Zhai YG. Epigenetic regulation of adipocyte differentiation and adipogenesis. J Zhejiang Univ Sci B. 2010;11:784–91.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Toubal A, Treuter E, Clément K, Venteclef N. Genomic and epigenomic regulation of adipose tissue inflammation in obesity. Trends Endocrinol Metab. 2013;24:625–34.

    Article  CAS  PubMed  Google Scholar 

  87. Jousse C, Parry L, Lambert-Langlais S, Maurin AC, Averous J, Bruhat A, Carraro V, Tost J, Letteron P, Chen P, Jockers R, Launay JM, Mallet J, Fafournoux P. Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. FASEB J. 2011;25:3271–8.

    Article  CAS  PubMed  Google Scholar 

  88. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60:1528–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Olaf Nielsen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khanal, P., Nielsen, M.O. (2017). Maternal Undernutrition and Visceral Adiposity. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics