Skip to main content

Maternal Insulin Sensitivity and Fetal Brain Activity

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Abstract

There is increasing evidence that an adverse intrauterine environment may have lifelong consequences for the offspring related to disease development. One determining factor can be the metabolic status of the mother. We present data addressing the relationship between maternal insulin sensitivity and fetal brain activity in humans. We briefly review the current knowledge on insulin sensitivity in the adult brain and on studies investigating fetal programming in animal models. Fetal brain activity can be recorded completely non-invasively in humans with fetal magnetoencephalography. First studies on the influence of maternal metabolism on fetal brain activity are described. These findings indicate that maternal insulin sensitivity directly affects fetal brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ER:

Evoked response

FFA:

Free fatty acids

fMEG:

Fetal magnetoencephalography

GDM:

Gestational diabetes mellitus

HOMA-IR:

Homeostatic model assessment of insulin resistance

IR:

Insulin resistance

IS:

Insulin sensitivity

NGT:

Normal glucose tolerant

OGTT:

Oral glucose tolerance test

SQUIDs:

Superconducting quantum interference devices

References

  1. Dabelea D, Hanson RL, Lindsay RS, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49:2208–11.

    Article  CAS  PubMed  Google Scholar 

  2. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25:1862–8.

    Article  PubMed  Google Scholar 

  3. HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002.

    Google Scholar 

  4. Sobngwi E, Boudou P, Mauvais-Jarvis F, et al. Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet. 2003;361:1861–5.

    Article  PubMed  Google Scholar 

  5. Heni M, Kullmann S, Preissl H, Fritsche A, Häring HU. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol. 2015;11(12):701–11.

    Article  CAS  PubMed  Google Scholar 

  6. Baura GD, Foster DM, Porte D Jr, Kahn SE, Bergman RN, Cobelli C, Schwartz MW. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92(4):1824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289(5487):2122–5.

    Article  PubMed  Google Scholar 

  8. Heni M, Kullmann S, Ketterer C, Guthoff M, Linder K, Wagner R, Stingl KT, Veit R, Staiger H, Häring HU, Preissl H, Fritsche A. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions. Diabetologia. 2012;55(6):1773–82.

    Article  CAS  PubMed  Google Scholar 

  9. Tschritter O, Preissl H, Hennige AM, Sartorius T, Stingl KT, Heni M, Ketterer C, Stefan N, Machann J, Schleicher E, Fritsche A, Häring HU. High cerebral insulin sensitivity is associated with loss of body fat during lifestyle intervention. Diabetologia. 2012;55(1):175–82.

    Article  CAS  PubMed  Google Scholar 

  10. Tschritter O, Preissl H, Hennige AM, Stumvoll M, Porubska K, Frost R, Marx H, Klösel B, Lutzenberger W, Birbaumer N, Häring HU, Fritsche A. The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci U S A. 2006;103:12103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Renner DB, Svitak AL, Gallus NJ, Ericson ME, Frey WH 2nd, Hanson LR. Intranasal delivery of insulin via the olfactory nerve pathway. J Pharm Pharmacol. 2012;64(12):1709–14.

    Article  CAS  PubMed  Google Scholar 

  12. Kullmann S, Frank S, Heni M, Ketterer C, Veit R, Häring HU, Fritsche A, Preissl H. Intranasal insulin modulates intrinsic reward and prefrontal circuitry of the human brain in lean women. Neuroendocrinology. 2013;97(2):176–82.

    Article  CAS  PubMed  Google Scholar 

  13. Kullmann S, Heni M, Veit R, Scheffler K, Machann J, Häring HU, Fritsche A, Preissl H. Elective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;38(6):1044–50.

    Article  CAS  PubMed  Google Scholar 

  14. Heni M, Wagner R, Kullmann S, Veit R, Mat Husin H, Linder K, Benkendorff C, Peter A, Stefan N, Häring HU, Preissl H, Fritsche A. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes. 2014;63(12):4083–8.

    Article  CAS  PubMed  Google Scholar 

  15. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  PubMed  Google Scholar 

  16. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.

    Article  CAS  PubMed  Google Scholar 

  17. Piotrowska I, Zgódka P, Milewska M, Błaszczyk M, Grzelkowska-Kowalczyk K. Developmental programming of metabolic diseases – a review of studies on experimental animal models [article in polish]. Postepy Hig Med Dosw (Online). 2014;68:899–911.

    Article  Google Scholar 

  18. Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD, Patel MS. Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab. 2006;291(4):E792–9.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor PD, McConnell J, Khan IY, Holemans K, Lawrence KM, Asare-Anane H, Persaud SJ, Petrie L, Hanson MA, Poston L. Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Phys Regul Integr Comp Phys. 2005;288:R134–9.

    CAS  Google Scholar 

  20. Vogt MC, Paeger L, Hess S, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell. 2014;156:495–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (α-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci. 2003;18:613–21.

    Article  PubMed  Google Scholar 

  22. Gupta A, Srinivasan M, Thamadilok S, Patel MS. Hypothalamic alterations in fetuses of high fat diet-fed obese female rats. J Endocrinol. 2009;200:293–300.

    Article  CAS  PubMed  Google Scholar 

  23. Sanguinetti E, Liistro T, Mainardi M, Pardini S, Salvadori PA, Vannucci A, Burchielli S, Iozzo P. Maternal high-fat feeding leads to alterations of brain glucose metabolism in the offspring: positron emission tomography study in a porcine model. Diabetologia. 2016;59(4):813–21.

    Article  CAS  PubMed  Google Scholar 

  24. Preissl H, Lowery CL, Eswaran H. Fetal magnetoencephalography: current progress and trends. Exp Neurol. 2004;190(Suppl 1):S28–36.

    Article  PubMed  Google Scholar 

  25. Blum T, Saling E, Bauer R. First magnetoencephalographic recordings of the brain activity of a human fetus. Br J Obstet Gynaecol. 1985;92(12):1224–9.

    Article  CAS  PubMed  Google Scholar 

  26. Eswaran H, Preissl H, Wilson JD, Murphy P, Robinson SE, Rose D, Vrba J, Lowery CL. Short-term serial magnetoencephalography recordings of fetal auditory evoked responses. Neurosci Lett. 2002;331(2):128–32.

    Article  CAS  PubMed  Google Scholar 

  27. Eswaran H, Wilson JD, Preissl H, Robinson SE, Vrba J, Murphy D, Rose D, Lowery CL. Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. Lancet. 2002;360(9335):779–80.

    Article  PubMed  Google Scholar 

  28. Lengle JM, Chen M, Wakai RT. Improved neuromagnetic detection of fetal and neonatal auditory evoked responses. Clin Neurophysiol. 2001;112(5):785–92.

    Article  CAS  PubMed  Google Scholar 

  29. Schneider U, Schleussner E, Haueisen J, Nowak H, Seewald HJ. Signal analysis of auditory evoked cortical fields in fetal magnetoencephalography. Brain Topogr. 2001;14(1):69–80.

    Article  CAS  PubMed  Google Scholar 

  30. Lowery CL, Eswaran H, Murphy P, Preissl H. Fetal magnetoencephalography. Semin Fetal Neonatal Med. 2006;11(6):430–6.

    Article  PubMed  Google Scholar 

  31. Preissl H, Lowery CL, Eswaran H. Fetal magnetoencephalography: viewing the developing brain in utero. Int Rev Neurobiol. 2005;68:1–23.

    Article  PubMed  Google Scholar 

  32. McCubbin J, Robinson SE, Cropp R, Moiseev A, Vrba J, Murphy P, Preissl H, Eswaran H. Optimal reduction of MCG in fetal MEG recordings. IEEE Trans Biomed Eng. 2006;53(8):1720–4.

    Google Scholar 

  33. Vrba J, Robinson SE, Mccubbin J, Lowery CL, Eswaran H, Wilson JD, Murphy P, Preissl H. Fetal MEG redistribution by projection operators. IEEE Trans Biomed Eng. 2004;51(7):1207–18.

    Article  PubMed  Google Scholar 

  34. Wilson JD, Govindan RB, Hatton JO, Lowery CL, Preissl H. Integrated approach for fetal QRS detection. IEEE Trans Biomed Eng. 2008;55(9):2190–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brändle J, Preissl H, Draganova R, Ortiz E, Kagan KO, Abele H, Brucker SY, Kiefer-Schmidt I. Heart rate variability parameters and fetal movement complement fetal behavioral states detection via magnetography to monitor neurovegetative development. Front Hum Neurosci. 2015;9:147.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stingl K, Paulsen H, Weiss M, Preissl H, Abele H, Goelz R, Wacker-Gussmann A. Development and application of an automated extraction algorithm for fetal magnetocardiography – normal data and arrhythmia detection. J Perinat Med. 2013;41(6):725–34.

    Article  PubMed  Google Scholar 

  37. Eswaran H, Govindan RB, Haddad NI, Siegel ER, Preissl HT, Murphy P, Lowery CL. Spectral power differences in the brain activity of growth-restricted and normal fetuses. Early Hum Dev. 2012;88(6):451–4.

    Article  PubMed  Google Scholar 

  38. Vairavan S, Govindan RB, Haddad N, Preissl H, Lowery CL, Siegel E, Eswaran H. Quantification of fetal magnetoencephalographic activity in low-risk fetuses using burst duration and interburst interval. Clin Neurophysiol. 2014;125(7):1353–9.

    Article  PubMed  Google Scholar 

  39. Holst M, Eswaran H, Lowery C, Murphy P, Norton J, Preissl H. Development of auditory evoked fields in human fetuses and newborns: a longitudinal MEG study. Clin Neurophysiol. 2005;116(8):1949–55.

    Article  PubMed  Google Scholar 

  40. Muenssinger J, Matuz T, Schleger F, Draganova R, Weiss M, Kiefer-Schmidt I, Wacker-Gussmann A, Govindan RB, Lowery CL, Eswaran H, Preissl H. Sensitivity to auditory spectral width in the fetus and infant – an fMEG study. Front Hum Neurosci. 2013;7:917.

    PubMed  PubMed Central  Google Scholar 

  41. Näätänen R. Mismatch negativity: clinical research and possible applications. Int J Psychophysiol. 2003;48(2):179–88.

    Article  PubMed  Google Scholar 

  42. Huotilainen M, Kujala A, Hotakainen M, Parkkonen L, Taulu S, Simola J, Nenonen J, Karjalainen M, Näätänen R. Short-term memory functions of the human fetus recorded with magnetoencephalography. Neuroreport. 2005;16(1):81–4.

    Article  PubMed  Google Scholar 

  43. Draganova R, Eswaran H, Murphy P, Lowery C, Preissl H. Serial magnetoencephalographic study of fetal and newborn auditory discriminative evoked responses. Early Hum Dev. 2007;83(3):199–207. Epub 2006 Jul 24.

    Article  PubMed  Google Scholar 

  44. Schleger F, Landerl K, Muenssinger J, Draganova R, Reinl M, Kiefer-Schmidt I, Weiss M, Wacker-Gußmann A, Huotilainen M, Preissl H. Magnetoencephalographic signatures of numerosity discrimination in fetuses and neonates. Dev Neuropsychol. 2014;39(4):316–29.

    Article  PubMed  Google Scholar 

  45. Matuz T, Govindan RB, Preissl H, Siegel ER, Muenssinger J, Murphy P, Ware M, Lowery CL, Eswaran H. Habituation of visual evoked responses in neonates and fetuses: a MEG study. Dev Cogn Neurosci. 2012;2(3):303–16.

    Article  PubMed  Google Scholar 

  46. Muenssinger J, Matuz T, Schleger F, Kiefer-Schmidt I, Goelz R, Wacker-Gussmann A, Birbaumer N, Preissl H. Auditory habituation in the fetus and neonate: an fMEG study. Dev Sci. 2013;16(2):287–95.

    Article  PubMed  Google Scholar 

  47. Schleussner E, Schneider U. Developmental changes of auditory-evoked fields in fetuses. Exp Neurol. 2004;190(Suppl 1):S59–64.

    Article  PubMed  Google Scholar 

  48. Kiefer I, Siegel E, Preissl H, Ware M, Schauf B, Lowery C, Eswaran H. Delayed maturation of auditory-evoked responses in growth-restricted fetuses revealed by magnetoencephalographic recordings. Am J Obstet Gynecol. 2008;199(5):503.e1–7.

    Article  Google Scholar 

  49. Morin EC, Schleger F, Preissl H, Braendle J, Eswaran H, Abele H, Brucker S, Kiefer-Schmidt I. Functional brain development in growth-restricted and constitutionally small fetuses: a fetal magnetoencephalography case-control study. BJOG. 2015;122(9):1184–90.

    Article  CAS  PubMed  Google Scholar 

  50. Kleinwechter H, Schäfer-Graf U, Bührer C, Hoesli I, Kainer F, Kautzky-Willer A, Pawlowski B, Schunck K, Somville T, Sorger M. Gestational diabetes mellitus (GDM) diagnosis, therapy and follow-up care. Practice guideline of the German diabetes association (DDG) and the German Association for Gynaecology and Obstetrics (DGGG). Exp Clin Endocrinol Diabetes. 2014;122:395–405.

    Article  CAS  PubMed  Google Scholar 

  51. Stumvoll M, van Haeften T, Fritsche A, Gerich J. Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care. 2001;24:796–7.

    Article  CAS  PubMed  Google Scholar 

  52. Linder K, Schleger F, Ketterer C, Fritsche L, Kiefer-Schmidt I, Hennige A, Häring HU, Preissl H, Fritsche A. Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity. Diabetologia. 2014;57(6):1192–8. doi:10.1007/s00125-014-3217-9. Epub 2014 Mar 28.

    Article  CAS  PubMed  Google Scholar 

  53. Linder K, Schleger F, Kiefer-Schmidt I, Fritsche L, Kümmel S, Heni M, Weiss M, Häring HU, Preissl H, Fritsche A. Gestational diabetes impairs human fetal postprandial brain activity. J Clin Endocrinol Metab. 2015;100(11):4029–36.

    Article  CAS  PubMed  Google Scholar 

  54. Pedersen J. The pregnant diabetic and her newborn: problems and management. In: Pathogenesis of the characteristic features of newborn infants of diabetic women. Baltimore: William & Wilkins; 1967. p. 128–37.

    Google Scholar 

  55. Tschritter O, Preissl H, Hennige AM, et al. The insulin effect on cerebrocortical theta activity is associated with serum concentrations of saturated nonesterified fatty acids. J Clin Endocrinol Metab. 2009;94:4600–7.

    Article  CAS  PubMed  Google Scholar 

  56. Szabo AJ, Szabo O. Placental free-fatty-acid transfer and fetal adipose-tissue development: an explantation of fetal adiposity in infants of diabetic mothers. Lancet. 1974;2(7879):498–9.

    Article  CAS  PubMed  Google Scholar 

  57. Scherer T, Buettner C. Yin and Yang of hypothalamic insulin and leptin signaling in regulating white adipose tissue metabolism. Rev Endocr Metab Disord. 2011;12(3):235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sartorius T, Heni M, Tschritter O, Preissl H, Hopp S, Fritsche A, Lievertz PS, Gertler A, Berthou F, Taouis M, Staiger H, Häring HU, Hennige AM. Leptin affects insulin action in astrocytes and impairs insulin-mediated physical activity. Cell Physiol Biochem. 2012;30(1):238–46.

    Article  CAS  PubMed  Google Scholar 

  59. Cetin I, Morpurgo PS, Radaelli T, Taricco E, Cortelazzi D, Bellotti M, Pardi G, Beck-Peccoz P. Fetal plasma leptin concentrations: relationship with different intrauterine growth patterns from 19 weeks to term. Pediatr Res. 2000;48(5):646–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Preissl PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schleger, F., Linder, K., Fritsche, A., Preissl, H. (2017). Maternal Insulin Sensitivity and Fetal Brain Activity. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics