Skip to main content

Effects of Fetal Programming on Metabolic Syndrome

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Part of the book series: Nutrition and Health ((NH))

Abstract

The concept of developmental origins of health and disease conveys the notion that the exposure to an unfavorable environment during pregnancy and lactation programs changes in fetal or neonatal metabolism, which in turn increases the risks of developing diseases in adult life. The evidence for fetal programming for metabolic diseases derives from a large number of epidemiological and animal observations. Several nutritional interventions and exposures during diverse phases of pregnancy and lactation in rodents and humans, respectively, are associated with fetal and neonatal programming for metabolic syndrome. In this chapter, we revisit epidemiological studies and experimental models providing evidence for the fetal programming associated with the development of metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HOMA-IR:

Homeostatic model assessment-insulin resistance

HPA:

Hypothalamic-pituitary-adrenocortical

ROS:

Reactive oxygen species

SD:

Sprague-Dawley

WIS:

Wistar

References

  1. Barker DJ. The developmental origins of insulin resistance. Horm Res. 2005;64(Suppl 3):2–7.

    CAS  PubMed  Google Scholar 

  2. Lakshmy R. Metabolic syndrome: role of maternal undernutrition and fetal programming. Rev Endocr Metab Disord. 2013;14(3):229–40.

    Article  CAS  PubMed  Google Scholar 

  3. Bacardi Gascon M, Jimenez Moran E, Santillana Marin E, Jimenez Cruz A. Effect of pre and post natal undernutrition on components of metabolic syndrome later in life; systematic review. Nutr Hosp. 2014;29(5):997–1003.

    PubMed  Google Scholar 

  4. Crume TL, Scherzinger A, Stamm E, et al. The long-term impact of intrauterine growth restriction in a diverse U.S. cohort of children: the EPOCH study. Obesity (Silver Spring). 2014;22(2):608–15.

    Article  CAS  Google Scholar 

  5. Brenseke B, Prater MR, Bahamonde J, Gutierrez JC. Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. J Pregnancy. 2013;2013:368461.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dyer JS, Rosenfeld CR. Metabolic imprinting by prenatal, perinatal, and postnatal overnutrition: a review. Semin Reprod Med. 2011;29(3):266–76.

    Article  CAS  PubMed  Google Scholar 

  7. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):e290–6.

    Article  PubMed  Google Scholar 

  8. Clausen TD, Mathiesen ER, Hansen T, et al. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J Clin Endocrinol Metab. 2009;94(7):2464–70.

    Article  CAS  PubMed  Google Scholar 

  9. de Gusmao Correia ML, Volpato AM, Aguila MB, Mandarim-de-Lacerda CA. Developmental origins of health and disease: experimental and human evidence of fetal programming for metabolic syndrome. J Hum Hypertens. 2012;26(7):405–19.

    Article  PubMed  Google Scholar 

  10. Harville EW, Srinivasan S, Chen W, Berenson GS. Is the metabolic syndrome a “small baby” syndrome?: the bogalusa heart study. Metab Syndr Relat Disord. 2012;10(6):413–21.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Plagemann A, Harder T, Schellong K, Schulz S, Stupin JH. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab. 2012;26(5):641–53.

    Article  PubMed  Google Scholar 

  12. Vuguin PM. Animal models for small for gestational age and fetal programming of adult disease. Horm Res. 2007;68(3):113–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Garofano A, Czernichow P, Breant B. In utero undernutrition impairs rat beta-cell development. Diabetologia. 1997;40(10):1231–4.

    Article  CAS  PubMed  Google Scholar 

  14. Garofano A, Czernichow P, Breant B. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia. 1998;41(9):1114–20.

    Article  CAS  PubMed  Google Scholar 

  15. Ergaz Z, Avgil M, Ornoy A. Intrauterine growth restriction-etiology and consequences: what do we know about the human situation and experimental animal models? Reprod Toxicol. 2005;20(3):301–22.

    Article  CAS  PubMed  Google Scholar 

  16. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279(1):E83–7.

    CAS  PubMed  Google Scholar 

  17. Snoeck A, Remacle C, Reusens B, Hoet JJ. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990;57(2):107–18.

    Article  CAS  PubMed  Google Scholar 

  18. Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes. 1991;40(Suppl 2):115–20.

    Article  CAS  PubMed  Google Scholar 

  19. Shepherd PR, Crowther NJ, Desai M, Hales CN, Ozanne SE. Altered adipocyte properties in the offspring of protein malnourished rats. Br J Nutr. 1997;78(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  20. Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Hepatic structural alteration in adult programmed offspring (severe maternal protein restriction) is aggravated by post-weaning high-fat diet. Br J Nutr. 2007;98(6):1159–69.

    Article  CAS  PubMed  Google Scholar 

  21. Almeida JR, Mandarim-de-Lacerda CA. Maternal gestational protein-calorie restriction decreases the number of glomeruli and causes glomerular hypertrophy in adult hypertensive rats. Am J Obstet Gynecol. 2005;192(3):945–51.

    Article  PubMed  Google Scholar 

  22. Newman WP 3rd, Freedman DS, Voors AW, et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study. N Engl J Med. 1986;314(3):138–44.

    Article  PubMed  Google Scholar 

  23. Patel MS, Srinivasan M. Metabolic programming due to alterations in nutrition in the immediate postnatal period. J Nutr. 2010;140(3):658–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plagemann A, Harder T, Rake A, et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 1999;836(1–2):146–55.

    Article  CAS  PubMed  Google Scholar 

  25. Holemans K, Caluwaerts S, Poston L, Van Assche FA. Diet-induced obesity in the rat: a model for gestational diabetes mellitus. Am J Obstet Gynecol. 2004;190(3):858–65.

    Article  PubMed  Google Scholar 

  26. Napoli C, de Nigris F, Welch JS, et al. Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray. Circulation. 2002;105(11):1360–7.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Wang C, Terroni PL, Cagampang FR, Hanson M, Byrne CD. High-unsaturated-fat, high-protein, and low-carbohydrate diet during pregnancy and lactation modulates hepatic lipid metabolism in female adult offspring. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R112–8.

    Article  CAS  PubMed  Google Scholar 

  28. Khan IY, Dekou V, Douglas G, et al. A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R127–33.

    Article  CAS  PubMed  Google Scholar 

  29. Buckley AJ, Keseru B, Briody J, Thompson M, Ozanne SE, Thompson CH. Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism. 2005;54(4):500–7.

    Article  CAS  PubMed  Google Scholar 

  30. Plagemann A. Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav. 2005;86(5):661–8.

    Article  CAS  PubMed  Google Scholar 

  31. Desai M, Gayle D, Han G, Ross MG. Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring. Reprod Sci. 2007;14(4):329–37.

    Article  PubMed  Google Scholar 

  32. Pereira RO, Moreira AS, de Carvalho L, Moura AS. Overfeeding during lactation modulates insulin and leptin signaling cascade in rats’ hearts. Regul Pept. 2006;136(1–3):117–21.

    Article  CAS  PubMed  Google Scholar 

  33. Moreira AS, Teixeira Teixeira M, da Silveira Osso F, et al. Left ventricular hypertrophy induced by overnutrition early in life. Nutr Metab Cardiovasc Dis. 2009;19(11):805–10.

    Article  CAS  PubMed  Google Scholar 

  34. Kadyrov M, Kosanke G, Kingdom J, Kaufmann P. Increased fetoplacental angiogenesis during first trimester in anaemic women. Lancet. 1998;352(9142):1747–9.

    Article  CAS  PubMed  Google Scholar 

  35. Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ. Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr. 2003;90(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Lewis RM, Wang C, Hales N, Byrne CD. Maternal dietary iron restriction modulates hepatic lipid metabolism in the fetuses. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R104–11.

    Article  CAS  PubMed  Google Scholar 

  37. Allen LH. Biological mechanisms that might underlie iron’s effects on fetal growth and preterm birth. J Nutr. 2001;131(2S-2):581S–9S.

    CAS  PubMed  Google Scholar 

  38. Benyshek DC, Johnston CS, Martin JF. Post-natal diet determines insulin resistance in fetally malnourished, low birthweight rats (F1) but diet does not modify the insulin resistance of their offspring (F2). Life Sci. 2004;74(24):3033–41.

    Article  CAS  PubMed  Google Scholar 

  39. Martin JF, Johnston CS, Han CT, Benyshek DC. Nutritional origins of insulin resistance: a rat model for diabetes-prone human populations. J Nutr. 2000;130(4):741–4.

    CAS  PubMed  Google Scholar 

  40. Benyshek DC, Johnston CS, Martin JF. Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia. 2006;49(5):1117–9.

    Article  CAS  PubMed  Google Scholar 

  41. Jimenez-Chillaron JC, Isganaitis E, Charalambous M, et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes. 2009;58(2):460–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Graus-Nunes F, Dalla Corte Frantz E, Lannes WR, da Silva Menezes MC, Mandarim-de-Lacerda CA, Souza-Mello V. Pregestational maternal obesity impairs endocrine pancreas in male F1 and F2 progeny. Nutrition. 2015;31(2):380–7.

    Article  CAS  PubMed  Google Scholar 

  43. Fullston T, Ohlsson Teague EM, Palmer NO, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27(10):4226–43.

    Article  CAS  PubMed  Google Scholar 

  44. Dunn GA, Bale TL. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology. 2011;152(6):2228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aiken CE, Ozanne SE. Transgenerational developmental programming. Hum Reprod Update. 2014;20(1):63–75.

    Article  PubMed  Google Scholar 

  46. Fowden AL, Giussani DA, Forhead AJ. Endocrine and metabolic programming during intrauterine development. Early Hum Dev. 2005;81(9):723–34.

    Article  CAS  PubMed  Google Scholar 

  47. Luo ZC, Fraser WD, Julien P, et al. Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med Hypotheses. 2006;66(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  48. Franco Mdo C, Dantas AP, Akamine EH, et al. Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero. J Cardiovasc Pharmacol. 2002;40(4):501–9.

    Article  PubMed  Google Scholar 

  49. Racasan S, Braam B, van der Giezen DM, et al. Perinatal L-arginine and antioxidant supplements reduce adult blood pressure in spontaneously hypertensive rats. Hypertension. 2004;44(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  50. Martin-Gronert MS, Ozanne SE. Mechanisms underlying the developmental origins of disease. Rev Endocr Metab Disord. 2012;13(2):85–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Pereira Alambert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alambert, R.P., de Gusmão Correia, M.L. (2017). Effects of Fetal Programming on Metabolic Syndrome. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_32

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics