Skip to main content

Growth Criteria and Predictors of Fetal Programming

  • Chapter
  • First Online:
  • 1539 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

The observation of poor nutrition in childhood and the development of disease in later life date from far back in Medicine. Ando so does the use of somatic growth, as a surrogate measure of nutrition. However, both the definition and meaning of adequate growth, particularly during intrauterine life, remain controversial.

From one side, developmental biology may interpret low size at birth as an adaptive process to avoid detrimental influence of stressors and, thus, as a beneficial strategy to a given individual or population. From the other, biomedical observations suggest that small size at birth is a sign of poorer health and lack of adaptation, and thus, a detrimental process to a given individual or population.

Not only too many factors (genetic, physiological and ontogenic) influence growth in utero, but the actual definition of what is adequate growth for a given individual, within a given population, at a given period of life is still a matter of debate.

And without a clear definition of this centerpiece parameter, all analyses of its influence on health or disease become, by proxy, unclear.

Classical growth curves, based gestational age and gender, were derived from population studies and have been in use for many decades. More recently, new, customized, growth criteria have been proposed. They incorporate other variables, such as mother’s height, parity and initial weight, to gender and gestational age with the aim of better assessing a child’s true growth potential.

The purpose of this chapter is to review standard and customized growth criteria and discuss which better reflects the effects from intrauterine programming and, thus, would be best suited to guide the studies of developmental origins of health and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AGA:

Adequate for gestational age

IUGR:

Intrauterine growth restriction

LGA:

Large for gestational age

SGA:

Small for gestational age

References

  1. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261:412–7.

    Article  CAS  PubMed  Google Scholar 

  2. Chmurzynska A. Fetal programming: link between early nutrition, DNA methylation, and complex diseases. Nutr Rev. 2010;68:87–98.

    Article  PubMed  Google Scholar 

  3. Wilcox AJ. On the importance – and the unimportance – of birthweight. Int J Epidemiol. 2001;30(6):1233–41.

    Article  CAS  PubMed  Google Scholar 

  4. Haig D. Genetic conflicts in human pregnancy. Q Rev Biol. 1993;68(4):495–532.

    Article  CAS  PubMed  Google Scholar 

  5. Kramer MS. Determinants of low birth weight: methodological assessment and meta-analysis. Bull World Health Organ. 1987;65(5):663–737.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Horbar JD, Badger GJ, Carpenter JH, Fanaroff AA, Kilpatrick S, LaCorte M, Phibbs R, Soll RF. Trends in mortality and morbidity for very low birth weight infants, 1991–1999. Pediatrics. 2002;110(1):143–51.

    Article  PubMed  Google Scholar 

  7. Barker DJ, Osmond C. Low birth weight and hypertension. BMJ. 1988;297(6641):134–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanaka-Gantennein C. Fetal origins of adult diabetes. Ann NY Acad Sci. 2010;1205:99–105.

    Article  Google Scholar 

  9. Varvarigou AA. Intrauterine growth restriction as a potential risk factor for disease onset in adulthood. J Pediatr Endocrinol Metab. 2010;23(3):215–24.

    Article  CAS  PubMed  Google Scholar 

  10. American Academy of Pediatrics. Committee on fetus and newborn. Nomenclature for duration of gestation, birth weight and intra-uterine growth. Pediatrics. 1967;39(6):935–9.

    Google Scholar 

  11. Rosenberg A. The IUGR newborn. Semin Perinatol. 2008;32(3):219–24.

    Article  PubMed  Google Scholar 

  12. Lee PA, et al. International small for gestational age advisory board consensus development conference statement: management of short children born small for gestational age, 2001 April 24-October 1, 2001. Pediatrics. 2003;111(6 Pt 1):1253–61.

    Article  PubMed  Google Scholar 

  13. Bernstein IG. Intrauterine growth restriction. In: Obstetrics: normal and problem pregnancies. v. 3rd ed. Philadelphia: Churchill Livingstone; 1996. p. 863–86.

    Google Scholar 

  14. Ananth CV, Vintzileos AM. Distinguishing pathological from constitutional small for gestational age births in population-based studies. Early Hum Dev. 2009;85(10):653–8.

    Article  PubMed  Google Scholar 

  15. McCowan LM, et al. Umbilical artery Doppler studies in small for gestational age babies reflect disease severity. BJOG. 2000;107(7):916–25.

    Article  CAS  PubMed  Google Scholar 

  16. Hershkovitz R, et al. Fetal cerebral blood flow redistribution in late gestation: identification of compromise in small fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol. 2000;15(3):209–12.

    Article  CAS  PubMed  Google Scholar 

  17. Figueras F, et al. Predictiveness of antenatal umbilical artery Doppler for adverse pregnancy outcome in small-for-gestational-age babies according to customised birthweight centiles: population-based study. BJOG. 2008;115(5):590–4.

    Article  CAS  PubMed  Google Scholar 

  18. Lubchenco LO, et al. Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics. 1963;32:793–800.

    CAS  PubMed  Google Scholar 

  19. Alexander GR, et al. A United States national reference for fetal growth. Obstet Gynecol. 1996;87(2):163–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bernstein IM, et al. Case for hybrid “fetal growth curves”: a population-based estimation of normal fetal size across gestational age. J Matern Fetal Med. 1996;5(3):124–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lubchenco LO. Assessment of gestational age and development of birth. Pediatr Clin N Am. 1970;17(1):125–45.

    Article  CAS  Google Scholar 

  22. Brenner WE, et al. A standard of fetal growth for the United States of America. Am J Obstet Gynecol. 1976;126(5):555–64.

    Article  CAS  PubMed  Google Scholar 

  23. Williams RL, et al. Fetal growth and perinatal viability in California. Obstet Gynecol. 1982;59(5):624–32.

    CAS  PubMed  Google Scholar 

  24. Marcondes E. The use of growth curves in child care. Rev Hosp Clin Fac Med Sao Paulo. 1987;42(5):218–21.

    CAS  PubMed  Google Scholar 

  25. Wilcox AJ. Birth weight from pregnancies dated by ultrasonography m a multicultural British population. BMJ. 1993;308:588–91.

    Article  Google Scholar 

  26. Ego A, et al. Customized versus population-based birth weight standards for identifying growth restricted infants: a French multicenter study. Am J Obstet Gynecol. 2006;194(4):1042–9.

    Article  PubMed  Google Scholar 

  27. Mongelli M, et al. A customized birthweight centile calculator developed for an Australian population. Aust N Z J Obstet Gynaecol. 2007;47(2):128–31.

    Article  PubMed  Google Scholar 

  28. Figueras F, et al. Customized birthweight standards for a Spanish population. Eur J Obstet Gynecol Reprod Biol. 2008;136(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  29. Gardosi J, et al. An adjustable fetal weight standard. Ultrasound Obstet Gynecol. 1995;6(3):168–74.

    Article  CAS  PubMed  Google Scholar 

  30. Morrison J, et al. The influence of paternal height and weight on birth-weight. Aust N Z J Obstet Gynaecol. 1991;31(2):114–6.

    Article  CAS  PubMed  Google Scholar 

  31. Windham GC, et al. Prenatal active or passive tobacco smoke exposure and the risk of preterm delivery or low birth weight. Epidemiology. 2000;11(4):427–33.

    Article  CAS  PubMed  Google Scholar 

  32. Arntzen A, et al. Socioeconomic status and risk of infant death. A population-based study of trends in Norway, 1967-1998. Int J Epidemiol. 2004;33(2):279–88.

    Article  PubMed  Google Scholar 

  33. Arntzen A, Nybo Andersen AM. Social determinants for infant mortality in the Nordic countries, 1980–2001. Scand J Public Health. 2004;32(5):381–9.

    Article  PubMed  Google Scholar 

  34. Raatikainen K, et al. Marriage still protects pregnancy. BJOG. 2005;112(10):1411–6.

    Article  PubMed  Google Scholar 

  35. Nikkila A, et al. Fetal growth and congenital malformations. Ultrasound Obstet Gynecol. 2007;29(3):289–95.

    Article  CAS  PubMed  Google Scholar 

  36. James SA. Racial and ethnic differences in infant mortality and low birth weight. A psychosocial critique. Ann Epidemiol. 1993;3(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  37. Fuller KE. Low birth-weight infants: the continuing ethnic disparity and the interaction of biology and environment. Ethn Dis. 2000;10(3):432–45.

    CAS  PubMed  Google Scholar 

  38. Wells JC, Cole TJ. Birth weight and environmental heat load: a between population analysis. Am J Phys Anthropol. 2002;119(3):276–82.

    Article  PubMed  Google Scholar 

  39. Graafmans WC, et al. Birth weight and perinatal mortality: a comparison of “optimal” birth weight in seven western European countries. Epidemiology. 2002;13(5):569–74.

    Article  PubMed  Google Scholar 

  40. Deter RL, et al. Mathematic modeling of fetal growth: development of individual growth curve standards. Obstet Gynecol. 1986;68(2):156–61.

    CAS  PubMed  Google Scholar 

  41. Gardosi J, et al. Customised antenatal growth charts. Lancet. 1992;339(8788):283–7.

    Article  CAS  PubMed  Google Scholar 

  42. Wilcox MA, et al. The individualised birthweight ratio: a more logical outcome measure than birthweight alone. Br J Obstet Gynaecol. 1993;100(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  43. Hadlock FP, et al. In utero analysis of fetal growth: a sonographic weight standard. Radiology. 1991;181(1):129–33.

    Article  CAS  PubMed  Google Scholar 

  44. Mattos SS, et al. Which growth criteria better predict fetal programming? Arch Dis Child Fetal Neonatal Ed. 2013;98(1):F81–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra da Silva Mattos MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

da Silva Mattos, S., Mourato, F.A. (2017). Growth Criteria and Predictors of Fetal Programming. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_31

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics