Skip to main content

Fetal Programming: Maternal Diets, Tryptophan, and Postnatal Development

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Abstract

Nutritional and/or hormonal variations in the embryo-fetal microenvironment are the basis of a phenomenon known as “fetal programming.” Thus, maternal proper diet plays an important role in reducing pregnancy complications and in preventing the onset of disorders and diseases in postnatal life. In this chapter, we analyze the role of nutrition during pregnancy and the possible effects of lack or excess of nutrients on the normal course of pregnancy and in pre- and postnatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

DOHaD:

Developmental Origins of Health and Disease

DTH:

Delayed-type hypersensitivity

GH:

Growth hormone

HIV:

Human immunodeficiency virus

IGF:

Insulin-like growth factor

IHD:

Ischaemic heart disease

IL-2:

Interleukin-2

IUGR:

Intrauterine growth restriction

NTDs:

Neural tube defects

PMS:

Premenstrual syndrome

PRL:

Prolactin

T3 :

Triiodothyronine

T4 :

Tetraiodothyronine

TSH:

Thyroid-stimulating hormone

References

  1. Minkin MJ. Embryonic development and pregnancy test sensitivity: the importance of earlier pregnancy detection. Women’s Health (Lond Engl). 2009;5(6):659–67.

    Article  Google Scholar 

  2. Triunfo S, Lanzone A. Impact of maternal under nutrition on obstetric outcomes. J Endocrinol Investig. 2015;38(1):31–8.

    Google Scholar 

  3. Reusens B, Ozanne SE, Remacle C. Fetal determinants of type 2 dyabetes. Curr Drug Targets. 2007;8(8):935–41.

    Article  CAS  PubMed  Google Scholar 

  4. Imbesi R, Castrogiovanni P. Embryonic and post natal development in experimental tryptophan deprived rats. A preliminary study. J Mol Histol. 2008;39(5):487–98.

    Article  CAS  PubMed  Google Scholar 

  5. Gabory A, Attig L, Junien C. Developmental programming and epigenetics. Am J Clin Nutr. 2011;94(6 Suppl):1943S–52S.

    Article  CAS  PubMed  Google Scholar 

  6. Ford SP, Long NM. Evidence for similar changes in offspring phenotype following either maternal undernutrition or overnutrition: potential impact on fetal epigenetic mechanisms. Reprod Fertil Dev. 2011;24(1):105–11.

    Article  CAS  PubMed  Google Scholar 

  7. Simpson JL, Bailey LB, Pietrzik K, Shane B, Holzgreve W. Micronutrients and women of reproductive potential: required dietary intake and consequences of dietary deficiency or excess. Part II – itamin D, vitamin A, iron, zinc, iodine, essential fatty acids. J Matern Fetal Neonatal Med. 2011;24(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  8. El Hajj N, Schneider E, Lehnen, Haaf T. Epigenetics and consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction. 2014;148(6):R111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  10. Barker DJ, Winter PD, Osmond C, et al. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–80.

    Article  CAS  PubMed  Google Scholar 

  11. Hales CN, Barker DJ, Clark PMS, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maki RG. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J Clin Oncol. 2010;28(33):4985–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Castrogiovanni P, Musumeci G, Trovato FM, Avola R, Magro G, Imbesi R. Effects of high-tryptophan diet on pre- and postnatal development in rats: a morphological study. Eur J Nutr. 2014;53(1):297–308.

    Article  CAS  PubMed  Google Scholar 

  14. Russo VEA, Martienssen RA, Riggs AD. Epigenetic mechanisms of gene regulation. Cold Springs Harbor: Cold Springs Harbor Laboratory Press; 1996.

    Google Scholar 

  15. Palmer AC. Nutritionally mediated programming of the developing immune system. Adv Nutr. 2011;2(5):377–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strzepa A, Szczepanik M. Influence of natural gut flora on immune response. Postepy Hig Med Dosw Online. 2013;67:908–20.

    Article  PubMed  Google Scholar 

  17. MacDonald TT, Pettersson S. Bacterial regulation of intestinal immune responses. Inflamm Bowel Dis. 2000;6(2):116–22.

    Article  CAS  PubMed  Google Scholar 

  18. Madan JC, Farzan SF, Hibberd PL, Karagas MR. Normal neonatal microbiome variation in relation to environmental factors, infection and allergy. Curr Opin Pediatr. 2012;24(6):753–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Anjos T, Altmäe S, Emmett P, et al. Nutrition and neurodevelopment in children: focus on NUTRIMENTHE Project. Eur J Nutr. 2013;52:1825–42.

    Article  CAS  PubMed  Google Scholar 

  20. Isaacs EB. Neuroimaging, a new tool for investigating the effects of early diet on cognitive and brain development. Front Hum Neurosci. 2013;7:445.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Czeizel AE, Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med. 1992;327:1832–5.

    Article  CAS  PubMed  Google Scholar 

  22. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;339:131–7.

    Google Scholar 

  23. Centers for Disease Control Prevention. Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. Morb Mortal Wkly Rep. 1992;41:1–8.

    Google Scholar 

  24. Pentieva K, McGarel C, McNulty B, et al. Effect of folic acid supplementation during pregnancy on growth and cognitive development of the offspring: a pilot followup investigation of children of FASSTT study participants. Proc Nutr Soc. 2012;71:E139.

    Article  Google Scholar 

  25. van de Rest O, van Hooijdonk LWA, Doets E, et al. B vitamins and n-3 fatty acids for brain development and function: review of human studies. Ann Nutr Metab. 2012;60:272–92.

    Article  PubMed  Google Scholar 

  26. Smith AD, Smith SM, de Jager CA, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5:e12244.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Imbesi R, D’Agata V, Musumeci G, Castrogiovanni P. Skeletal muscle: from development to function. Clin Ter. 2014;165:47–56.

    CAS  PubMed  Google Scholar 

  28. Yoshimura M, Hagimoto M, Matsuura T, Ohkubo J, Ohno M, Maruyama T, et al. Effects of food deprivation on the hypothalamic feeding-regulating peptides gene expressions in serotonin depleted rats. J Physiol Sci. 2014;64:97–104.

    Article  CAS  PubMed  Google Scholar 

  29. Whitaker-Azmitia PM. Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism? Int J Dev Neurosci. 2005;23(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  30. Hranilovic D, Blažević S, Ivica N, Cicin-Sain L, Oreskovic D. The effects of the perinatal treatment with 5-hydroxytryptophan or tranylcypromine on the peripheral and central serotonin homeostasis in adult rats. Neurochem Int. 2011;59(2):202–7.

    Article  CAS  PubMed  Google Scholar 

  31. Duan C. Nutritional and developmental regulation of insulin-like growth factors in fish. J Nutr. 1998;128:306S–14S.

    CAS  PubMed  Google Scholar 

  32. Musumeci G, Castrogiovanni P, Coleman R, Szychlinska MA, Salvatorelli L, Parenti R, Magro G, Imbesi R. Somitogenesis: from somite to skeletal muscle. Acta Histochem. 2015;117(4–5):313–28.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, Du M. Maternal nutrient restriction affects properties of skeletal muscle in offspring. J Physiol. 2006;575:241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trovato FM, Imbesi R, Conway N, Castrogiovanni P. Morphological and functional aspects of human skeletal muscle. J Funct Morphol Kinesiol. 2016;1(3):289–302.

    Article  Google Scholar 

  35. Musumeci G, Imbesi R, Trovato FM, Szychlinska MA, Aiello FC, Buffa P, Castrogiovanni P. Importance of serotonin (5-HT) and its precursor l-tryptophan for homeostasis and function of skeletal muscle in rats. A morphological and endocrinological study. Acta Histochem. 2015;117(3):267–74.

    Article  CAS  PubMed  Google Scholar 

  36. Ruan Z, Yang Y, Wen Y, Zhou Y, Fu X, Ding S, et al. Metabolomic analysis of amino acid and fat metabolism in rats with l-tryptophan supplementation. Amino Acids. 2014;46:2681–91.

    Article  CAS  PubMed  Google Scholar 

  37. Musumeci G, Loreto C, Trovato FM, Giunta S, Imbesi R, Castrogiovanni P. Serotonin (5HT) expression in rat pups treated with high-tryptophan diet during fetal and early postnatal development. Acta Histochem. 2014;116(2):335–43.

    Article  CAS  PubMed  Google Scholar 

  38. Bourc’his D, Proudhon C. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development. Mol Cell Endocrinol. 2008;282:87–94.

    Article  PubMed  Google Scholar 

  39. Sharpe RM, Franks S. Environment, lifestyle and infertility–an inter-generational issue. Nat Cell Biol. 2002;4(Suppl):s33–40.

    Article  PubMed  Google Scholar 

  40. Kauffman AS, Bojkowska K, Rissman EF. Critical periods of susceptibility to short-term energy challenge during pregnancy: impact on fertility and offspring development. Physiol Behav. 2010;99(1):100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cetin I, Berti C, Calabrese S. Role of micronutrients in the periconceptional period. Hum Reprod Update. 2010;16:80–95.

    Article  CAS  PubMed  Google Scholar 

  42. de Bruin JP, Dorland M, Bruinse HW, Spliet W, Nikkels PG, Te Velde ER. Fetal growth retardation as a cause of impaired ovarian development. Early Hum Dev. 1998;51:39–46.

    Article  PubMed  Google Scholar 

  43. Boisen KA, Main KM, Rajpert-De Meyts E, Skakkebaek NE. Are male reproductive disorders a common entity? The testicular dysgenesis syndrome. Ann N Y Acad Sci. 2001;948:90–9.

    Article  CAS  PubMed  Google Scholar 

  44. Keim SA, Branum AM, Klebanoff MA, Zemel BS. Maternal body mass index and daughters’ age at menarche. Epidemiology. 2009;20:677–81.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Toulis KA, Iliadou PK, Venetis CA, Tsametis C, Tarlatzis BC, Papadimas I, et al. Inhibin B and anti-Mullerian hormone as markers of persistent spermatogenesis in men with non-obstructive azoospermia: a meta-analysis of diagnostic accuracy studies. Hum Reprod Update. 2010;16:713–24.

    Article  CAS  PubMed  Google Scholar 

  46. Ornoy A, Ergaz Z. Alcohol abuse in pregnant women: effects on the fetus and newborn, mode of action and maternal treatment. Int J Environ Res Public Health. 2010;7:364–79.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ramlau-Hansen CH, Toft G, Jensen MS, Strandberg-Larsen K, Hansen ML, Olsen J. Maternal alcohol consumption during pregnancy and semen quality in the male offspring: two decades of follow-up. Hum Reprod. 2010;25:2340–5.

    Article  CAS  PubMed  Google Scholar 

  48. Damgaard IN, Jensen TK, Petersen JH, Skakkebaek NE, Toppari J, Main KM. Cryptorchidism and maternal alcohol consumption during pregnancy. Environ Health Perspect. 2007;115:272–7.

    Article  CAS  PubMed  Google Scholar 

  49. Curhan GC, Willet WC, Rimm EB, et al. Birth weight and adult hypertension, diabetes mellitus and obesity in US men. Circulation. 1996;15:3246–50.

    Article  Google Scholar 

  50. Mi J, Law C, Zhang KL, et al. Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med. 2000;132(4):253–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Musumeci PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Musumeci, G., Castrogiovanni, P., Trovato, F.M., Szychlinska, M.A., Imbesi, R. (2017). Fetal Programming: Maternal Diets, Tryptophan, and Postnatal Development. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_24

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics