Skip to main content

Maternal Fish Oil Intake and Insulin Resistance in the Offspring

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Abstract

The intake of fish oils during pregnancy increases the duration of pregnancy, reduces the incidence of premature delivery, and has other benefits for the neonates, but some harmful effects have been also reported including low levels of arachidonic acid, which is essential for intrauterine growth. The intake of fish oil has been claimed to reduce the risk factors of the metabolic syndrome, including insulin resistance and diabetes, although contradictory results have also been described. Data on the long-term effects of fish oil, consumed during the perinatal stages, on the glucose-insulin axis are scarce and variable in both humans and experimental animals. In 1-year-old male pups of rats with moderate intakes of fish oil during just the first half of pregnancy, insulin sensitivity was higher than in those from dams given identical treatment except that fish oil was replaced by one of four different oils. Different epigenetic DNA marks may explain the influence of dietary factors in early developmental stages on the risk of metabolic diseases in adulthood. There is also increasing evidence that those mechanisms may involve the modulation of noncoding small RNAs, and the increased insulin sensitivity in those adult pups of rats fed fish oil during early pregnancy has been related to changes in the expression of several microRNAs. In conclusion, the long-term effects of fish oil supplementation during the perinatal stage on insulin sensitivity are variable depending on the dose and time-window, and its epigenetic explanation seems to include decreases in the expression of microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid

ALA:

α-Linolenic acid

AUC:

Area under the curve

DHA:

Docosahexaenoic acid

EFA:

Essential fatty acids

EPA:

Eicosapentaenoic acid

FO:

Fish oil

HOMA:

Homeostasis model assessment of insulin resistance

LA:

Linoleic acid

LCPUFA:

Long-chain polyunsaturated fatty acids

LO:

Linseed oil

miRNA:

microRNA

miRNAome:

Whole-genome microRNA

ncRNA:

Noncoding RNA

NF-Y:

Nuclear factor Y

OO:

Olive oil

PA:

Palm oil

PPAR-α and PPAR-γ:

Peroxisome proliferator-activated receptor α and γ

SO:

Soy oil

Sp1:

Specificity protein 1

siRNA:

Small interfering RNA

snoRNA:

Small nucleolar RNA

SREBP-1:

Sterol regulatory element binding protein-1

stRNA:

Sperm transfer RNA

tiRNA:

Transcription initiation RNA

References

  1. Szitanyi P, Koletzko B, Mydlilova A, Demmelmair H. Metabolism of 13C-labeled linoleic acid in newborn infants during the first week of life. Pediatr Res. 1999;45(5 Pt 1):669–73.

    Article  CAS  PubMed  Google Scholar 

  2. Matorras R, Perteagudo L, Sanjurjo P, Ruiz JI. Intake of long chain w3 polyunsaturated fatty acids during pregnancy and the influence of levels in the mother on newborn levels. Eur J Obstet Gynecol Reprod Biol. 1999;83(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  3. Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev. 2000;16(3):202–10.

    Article  CAS  PubMed  Google Scholar 

  4. van Houwelingen AC, Sorensen JD, Hornstra G, et al. Essential fatty acid status in neonates after fish-oil supplementation during late pregnancy. Br J Nutr. 1995;74(5):723–31.

    Article  PubMed  Google Scholar 

  5. Olsen SF, Secher NJ. Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. BMJ. 2002;324(7335):447.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thorsdottir I, Birgisdottir BE, Halldorsdottir S, Geirsson RT. Association of fish and fish liver oil intake in pregnancy with infant size at birth among women of normal weight before pregnancy in a fishing community. Am J Epidemiol. 2004;160(5):460–5.

    Article  PubMed  Google Scholar 

  7. Amusquivar E, Ruperez FJ, Barbas C, Herrera E. Low arachidonic acid rather than alpha-tocopherol is responsible for the delayed postnatal development in offspring of rats fed fish oil instead of olive oil during pregnancy and lactation. J Nutr. 2000;130(11):2855–65.

    CAS  PubMed  Google Scholar 

  8. van Goor SA, Dijck-Brouwer DA, Erwich JJ, Schaafsma A, Hadders-Algra M. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months. Prostaglandins Leukot Essent Fat Acids. 2011;84(5–6):139–46.

    Article  Google Scholar 

  9. Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003;111(1):e39–44.

    Article  PubMed  Google Scholar 

  10. Jimenez MJ, Bocos C, Panadero M, Herrera E. Fish oil diet in pregnancy and lactation reduces pup weight and modifies newborn hepatic metabolic adaptations in rats. Eur J Nutr. 2015;56:409.

    Article  PubMed  Google Scholar 

  11. Carlson SE, Werkman SH, Peeples JM, Cooke RJ, Tolley EA. Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci U S A. 1993;90(3):1073–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koletzko B, Braun M. Arachidonic acid and early human growth: is there a relation? Ann Nutr Metab. 1991;35(3):128–31.

    Article  CAS  PubMed  Google Scholar 

  13. Innis SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. 2011;7(Suppl 2):112–23.

    Article  PubMed  Google Scholar 

  14. Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res. 2011;50(4):372–87.

    Article  CAS  PubMed  Google Scholar 

  15. Storlien LH, Kraegen EW, Chisholm DJ, Ford GL, Bruce DG, Pascoe WS. Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science. 1987;237(4817):885–8.

    Article  CAS  PubMed  Google Scholar 

  16. Yamazaki RK, Brito GA, Coelho I, et al. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats. Lipids Health Dis. 2011;10:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu JH, Micha R, Imamura F, et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr. 2012;107(Suppl 2):S214–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Virtanen JK, Mursu J, Voutilainen S, Uusitupa M, Tuomainen TP. Serum omega-3 polyunsaturated fatty acids and risk of incident type 2 diabetes in men: the Kuopio Ischemic Heart Disease Risk Factor study. Diabetes Care. 2014;37(1):189–96.

    Article  CAS  PubMed  Google Scholar 

  19. Herrera E, Amusquivar E, Cacho J. Changes in dietary fatty acids modify the decreased lipolytic beta3-adrenergic response to hyperinsulinemia in adipocytes from pregnant and nonpregnant rats. Metabolism. 2000;49(9):1180–7.

    Article  CAS  PubMed  Google Scholar 

  20. Clarke SD. Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr. 2001;131(4):1129–32.

    CAS  PubMed  Google Scholar 

  21. Saccone G, Saccone I, Berghella V. Omega-3 long-chain polyunsaturated fatty acids and fish oil supplementation during pregnancy: which evidence? J Matern Fetal Neonatal Med. 2016;29(15): 2389–97.

    Google Scholar 

  22. Saccone G, Berghella V. Omega-3 long chain polyunsaturated fatty acids to prevent preterm birth: a systematic review and meta-analysis. Obstet Gynecol. 2015;125(3):663–72.

    Article  CAS  PubMed  Google Scholar 

  23. Yessoufou A, Nekoua MP, Gbankoto A, Mashalla Y, Moutairou K. Beneficial effects of omega-3 polyunsaturated fatty acids in gestational diabetes: consequences in macrosomia and adulthood obesity. J Diabetes Res. 2015;2015:731434.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen B, Ji X, Zhang L, Hou Z, Li C, Tong Y. Fish oil supplementation does not reduce risks of gestational diabetes mellitus, pregnancy-induced hypertension, or pre-eclampsia: a meta-analysis of randomized controlled trials. Med Sci Monit. 2015;21:2322–30.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Albert BB, Derraik JG, Cameron-Smith D, et al. Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Sci Rep. 2015;5:7928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gitto E, Reiter RJ, Karbownik M, et al. Causes of oxidative stress in the pre- and perinatal period. Biol Neonate. 2002;81(3):146–57.

    Article  CAS  PubMed  Google Scholar 

  27. Lucas A. Programming by early nutrition in man. CIBA Found Symp. 1991;156:38–50. discussion 50-35.

    CAS  PubMed  Google Scholar 

  28. Zambrano E, Bautista CJ, Deas M, et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol. 2006;571(Pt 1):221–30.

    Article  CAS  PubMed  Google Scholar 

  29. Mennitti LV, Oliveira JL, Morais CA, et al. Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. J Nutr Biochem. 2015;26(2):99–111.

    Article  CAS  PubMed  Google Scholar 

  30. Donahue SM, Rifas-Shiman SL, Gold DR, Jouni ZE, Gillman MW, Oken E. Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am J Clin Nutr. 2011;93(4):780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stene LC, Ulriksen J, Magnus P, Joner G. Use of cod liver oil during pregnancy associated with lower risk of type I diabetes in the offspring. Diabetologia. 2000;43(9):1093–8.

    Article  CAS  PubMed  Google Scholar 

  32. Rytter D, Bech BH, Christensen JH, Schmidt EB, Henriksen TB, Olsen SF. Intake of fish oil during pregnancy and adiposity in 19-y-old offspring: follow-up on a randomized controlled trial. Am J Clin Nutr. 2011;94(3):701–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hussain A, Nookaew I, Khoomrung S, et al. A maternal diet of fatty fish reduces body fat of offspring compared with a maternal diet of beef and a post-weaning diet of fish improves insulin sensitivity and lipid profile in adult C57BL/6 male mice. Acta Physiol. 2013;209(3):220–34.

    CAS  Google Scholar 

  34. Joshi S, Rao S, Golwilkar A, Patwardhan M, Bhonde R. Fish oil supplementation of rats during pregnancy reduces adult disease risks in their offspring. J Nutr. 2003;133(10):3170–4.

    CAS  PubMed  Google Scholar 

  35. Ibrahim A, Ghafoorunissa, Basak S, Ehtesham NZ. Impact of maternal dietary fatty acid composition on glucose and lipid metabolism in male rat offspring aged 105 d. Br J Nutr. 2009;102(2):233–41.

    Google Scholar 

  36. López-Soldado I, Ortega-Senovilla H, Herrera E. Fish oil intake during pregnancy and lactation in rats has different long-term effects on glucose-insulin relationships in male pups depending on their age. Scientific Pages Diabetol 2016;1(1):1–5.

    Google Scholar 

  37. Amusquivar E, Laws J, Clarke L, Herrera E. Fatty acid composition of the maternal diet during the first or the second half of gestation influences the fatty acid composition of sows’ milk and plasma, and plasma of their piglets. Lipids. 2010;45(5):409–18.

    Article  CAS  PubMed  Google Scholar 

  38. Fernandes FS, Tavares do Carmo M, Herrera E. Influence of maternal diet during early pregnancy on the fatty acid profile in the fetus at late pregnancy in rats. Lipids. 2012;47(5):505–17.

    Article  CAS  PubMed  Google Scholar 

  39. Fernandes FS, Sardinha FL, Badia-Villanueva M, Carulla P, Herrera E, Tavares do Carmo MG. Dietary lipids during early pregnancy differently influence adipose tissue metabolism and fatty acid composition in pregnant rats with repercussions on pup’s development. Prostaglandins Leukot Essent Fat Acids. 2012;86(4–5):167–74.

    Article  CAS  Google Scholar 

  40. Sardinha FL, Fernandes FS, Tavares do Carmo MG, Herrera E. Sex-dependent nutritional programming: fish oil intake during early pregnancy in rats reduces age-dependent insulin resistance in male, but not female, offspring. Am J Physiol Regul Integr CompPhysiol. 2013;304(4):R313–20.

    Article  CAS  Google Scholar 

  41. Siemelink M, Verhoef A, Dormans JA, Span PN, Piersma AH. Dietary fatty acid composition during pregnancy and lactation in the rat programs growth and glucose metabolism in the offspring. Diabetologia. 2002;45(10):1397–403.

    Article  CAS  PubMed  Google Scholar 

  42. Casas-Agustench P, Fernandes FS, Tavares do Carmo MG, Visioli F, Herrera E, Davalos A. Consumption of distinct dietary lipids during early pregnancy differentially modulates the expression of microRNAs in mothers and offspring. PLoS One. 2015;10(2):e0117858.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Levine M, Tjian R. Transcription regulation and animal diversity. Nature. 2003;424(6945):147–51.

    Article  CAS  PubMed  Google Scholar 

  44. Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105(2):716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31(3):522–33.

    Article  CAS  PubMed  Google Scholar 

  47. Mercer SE, Cheng CH, Atkinson DL, et al. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PLoS One. 2012;7(12):e52375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dinger ME, Amaral PP, Mercer TR, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 2005;4(9):1179–84.

    Article  CAS  PubMed  Google Scholar 

  50. Canani RB, Costanzo MD, Leone L, et al. Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev. 2011;24(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  51. Langley-Evans SC. Nutritional programming of disease: unravelling the mechanism. J Anat. 2009;215(1):36–51.

    Article  PubMed  Google Scholar 

  52. Simmons R. Epigenetics and maternal nutrition: nature v. nurture. Proc Nutr Soc. 2011;70(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  53. Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Casas-Agustench P, Iglesias-Gutierrez E, Davalos A. Mother’s nutritional miRNA legacy: nutrition during pregnancy and its possible implications to develop cardiometabolic disease in later life. Pharmacol Res. 2015;100:322–34.

    Article  CAS  PubMed  Google Scholar 

  55. Hoile SP, Irvine NA, Kelsall CJ, et al. Maternal fat intake in rats alters 20:4n-6 and 22:6n-3 status and the epigenetic regulation of Fads2 in offspring liver. J Nutr Biochem. 2013;24(7):1213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Amarasekera M, Noakes P, Strickland D, Saffery R, Martino DJ, Prescott SL. Epigenome-wide analysis of neonatal CD4(+) T-cell DNA methylation sites potentially affected by maternal fish oil supplementation. Epigenetics: official journal of the DNA Methylation Society. 2014;9(12):1570–6.

    Article  Google Scholar 

  57. Lee HS, Barraza-Villarreal A, Biessy C, et al. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants. Physiol Genomics. 2014;46(23):851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Herrera E, Ortega H, Alvino G, Giovannini N, Amusquivar E, Cetin I. Relationship between plasma fatty acid profile and antioxidant vitamins during normal pregnancy. Eur J Clin Nutr. 2004;58(9):1231–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank pp.-science-editing.com for editing and linguistic revision of the manuscript. Preparation of this chapter was carried out in part with grants from the Universidad San Pablo–CEU and the Fundación Ramón Areces (CIVP16A1835) of Spain to EH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Herrera PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Herrera, E., Casas-Agustench, P., Dávalos, A. (2017). Maternal Fish Oil Intake and Insulin Resistance in the Offspring. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_20

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics